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AtRec: Accelerating Recommendation Model
Training on CPUs

Siqi Wang , Tianyu Feng , Hailong Yang , Xin You , Bangduo Chen , Tongxuan Liu ,
Zhongzhi Luan , and Depei Qian

Abstract—The popularity of recommendation models and the
enhanced AI processing capability of CPUs have provided massive
performance opportunities to deliver satisfactory experiences to
a large number of users. Unfortunately, existing recommendation
model training methods fail to achieve high efficiency due to unique
challenges such as dynamic shape and high parallelism. To address
the above limitations, we comprehensively study the distinctive
characteristics of recommendation models and discover several
unexploited optimization opportunities. To exploit such opportuni-
ties, we propose AtRec, a high-performant recommendation model
training engine that significantly accelerates the training process
on CPUs. Specifically, AtRec presents comprehensive approach of
training that employs operator-level and graph-level joint opti-
mizations and runtime optimization. At the operator-level, AtRec
identifies and optimizes the time-consuming operators, which en-
ables further efficient graph-level optimizations. At the graph-level,
AtRec conducts an in-depth analysis of the inefficiencies in sev-
eral frequently used subgraphs, enables further performance im-
provement via eliminating redundant computations and memory
accesses. In addition, to achieve better runtime performance, AtRec
also identifies inefficiencies prevalent in the current scheduling and
proposes runtime batching. The experiment results demonstrate
that AtRec can significantly outperform state-of-the-art recom-
mendation model training engines. We have open sourced the
implementation and corresponding data of AtRec to boost research
in this direction.

Index Terms—Recommendation system, deep neural network,
model training, performance optimization.

I. INTRODUCTION

R ECOMMENDATION systems are becoming an indis-
pensable part of daily life and have been widely used in
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e-commerce platforms [1], social media [2], video [3], music
applications [4], and other fields to provide personalized and
accurate recommendations for better user experience and busi-
ness revenues. For example, Alibaba’s recommendation system
has served over 800 million users worldwide, contributing to
over 1 trillion dollars in Gross Merchandise Volume (GMV) [1].
YouTube’s recommendation system has helped over 1 billion
users discover personalized content from an ever-growing li-
brary of videos [3], resulting in a 60% increase in clicks. Netflix’s
recommendation system has generated a 75% increase in views
and profits of over 1 billion dollars [5]. Spotify reported its
significant monthly subscriber growth from 75 million to 100
million with the help of recommendation systems [4].

Although the concept of the recommendation system was
introduced a long time ago [6], the success of industrial ap-
plications has continued to promote the rapid development of
recommendation systems. It has gradually evolved from the
initial collaborative filtering techniques to logistic regression
models, and in recent years, deep learning-based recommenda-
tion models have been gaining significant attention. Specifically,
DeepFM [7] and Wide & Deep [8] models have been widely
deployed in the industry, effectively improving related appli-
cations. Moreover, DIEN [9] model is another widely adopted
variant of the Wide & Deep model to incorporate time-series
information such as historical user interests, bringing a new wave
of development in recommendation systems.

When deploying deep learning-based recommendation sys-
tems in production, the performance of model training is of
critical importance. For large-scale recommendation systems,
the number of users and items is extremely large, and ineffi-
cient model training will increase the burden and cost of the
recommendation system, delay the model updates, and further
affect user experience. Therefore, the efficiency of the recom-
mendation model training is of crucial importance to many
enterprises. Meanwhile, CPU vendors continue to introduce new
AI processing capabilities. For example, Intel Xeon Scalable
Processors upgrades AVX256 to AVX512 and introduces an
instruction set that supports BF16 data types for mixed-precision
training, greatly improving the training performance. To explore
the potential of CPU-based recommendation model training,
we perform experiments comparing the performance of the
training on CPU and GPU (detailed setup can be referred to
Section IV-A). As shown in Fig. 1, in several cases, the CPU-
based training achieves comparable performance compared to
the GPU-based training. These experimental results indicate
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Fig. 1. Normalized performance with GPU-based recommendation model
training (GPU-based) compared to CPU-based recommendation model training
(CPU-based). The values on the bar of CPU-based represent its absolute latency
incurred during the overall execution.

that the CPU-based and GPU-based recommendation model
training have their respective advantages for different model and
dataset. Especially, when considering the cost of up-front invest-
ment, CPU-based recommendation system is more appealing
to medium and small organizations. Therefore, we believe that
CPU-based optimizations are important in such scenarios and
choose CPU as the target platform to optimize the performance
of recommendation model training.

However, there is much room left for further improving the
performance of recommendation model training on CPUs. The
training of a recommendation model is essentially the execution
of operators in its computation graph. Operator libraries such as
OneDNN [10] and OpenBLAS [11] provide targeted optimiza-
tion of the operator computation, that effectively accelerates the
performance of the operators on specific platform. However,
the implementation of these operator libraries requires signifi-
cant tuning cost and their development usually lags behind the
increasingly diverse model structures and operator representa-
tions. They mostly focus on general models such as Deep Neural
Network (DNN) and Convolutional Neural Network (CNN) with
computation-intensive operators (e.g., Conv, MatMul). Thus,
such operator libraries will miss the opportunity to optimize spe-
cific operators for recommendation models (e.g., StringSplitV2,
OneHot, etc.), which are time-consuming to process features
during pre-processing. Besides, operator libraries are limited
to the performance optimization of the individual operators,
missing the opportunity for further graph-level optimizations.

Deep learning compliers serve as another means to accelerate
model training [12], [13]. However, they can only achieve no-
ticeable performance gains on general models such as DNN and
CNN while failing to handle the unique challenges of recom-
mendation models, resulting in limited performance. Specifi-
cally, the input of recommendation models is dynamic, while
most of these compilers are designed to handle static-shape
workloads. This implies that whenever there is a change in
the input shape, recompilation becomes necessary, leading to
significant compilation overhead. Besides, the recommendation
model often contains many inexpensive operators with high
parallelism, and the commonly adopted kernel fusion in deep
learning compilers will miss parallelization opportunities, which

underutilizes the computation resources. The generality of deep
learning compilers prevents them from performing specific op-
timizations tailored to the characteristics of recommendation
models, resulting in suboptimal or even negative performance
on recommendation models.

Based on the above analysis, we believe that to obtain better
performance of recommendation model training on CPUs, it is
necessary to adopt flexible and targeted optimizations according
to the characteristics of recommendation models. To achieve
the above goal, we propose AtRec, an efficient recommenda-
tion training engine based on DeepRec [14]. It optimizes the
whole process of recommendation model training with several
unique optimizations including operator-level and graph-level
joint optimizations and runtime optimization. At the operator
level, we identify the time-consuming operators and follow the
well-studied techniques like vectorization and intra-operator
parallelism to optimize them, which enables us for efficient
graph-level optimization. At the graph level, we accelerate fre-
quently used subgraphs via eliminating redundant computations
and memory accesses. In addition, to improve runtime perfor-
mance, we also identify inefficiencies prevalent in the current
scheduling and propose runtime batching for best end-to-end
performance. AtRec is open-sourced at https://github.com/buaa-
hipo/Atrec. The experiment results demonstrate that AtRec can
significantly outperform state-of-the-art recommendation model
training engines.

Specifically, this paper makes the following contributions:
� We comprehensively analyze the performance bottlenecks

of recommendation models and illustrate the opportunities
to improve training throughput.

� We propose a series of operator-level and graph-level joint
optimization schemes to achieve efficient recommendation
model training. We also improve the runtime performance
by employing runtime batching.

� We implement an efficient recommendation training en-
gine AtRec and evaluate it with commonly adopted recom-
mendation models. The evaluation results demonstrate that
AtRec can achieve 1.07× ∼ 7.55× speedup for end-to-end
model training in comparison to the state-of-the-art training
engines.

The rest of this paper is organized as follows. Section II
introduces the backgrounds of deep learning-based recommen-
dation models and key insights to motivate this work. Section III
presents the details of the AtRec optimization strategies. We
evaluate AtRec in Section IV. We discuss the related work in
Section V and conclude this paper in Section VI.

II. BACKGROUND AND MOTIVATION

A. Deep Learning-Based Recommendation Frameworks

Fig. 2 shows the basic architecture of commonly adopted deep
learning-based recommendation frameworks such as DIEN [9],
WDL [8], DeepFM [7], etc., which typically consists of an
embedding layer, a feature interaction layer, and a multilayer
perceptron (MLP). The training of recommendation models
mainly comprises two phases including feature processing and
feature interaction. Specifically, for feature processing, the
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Fig. 2. Deep learning-based recommendation framework architecture.

sparse feature is first transformed into a low-dimensional dense
feature by encoding various feature column data in the em-
bedding layer and stored in the form of an embedding table.
For feature interaction, recommendation frameworks will use a
variety of different feature interaction modules (e.g., Recurrent
Neural Network (RNN), Graph Neural Network (GNN), etc.)
to extract useful information from embeddings or otherwise
encoded inputs in the feature interaction layer, and their outputs
will be concatenated as the output of this layer. Afterwards, the
concatenated vector is fed into a fully-connected MLP to provide
the final prediction.

Deep learning-based recommendation frameworks have been
widely researched and applied in the industry. Wide & Deep
(WDL) [8] is a recommendation framework proposed by
Google, which skillfully combines traditional feature engineer-
ing with deep learning models. Specifically, it consists of wide
and deep parts, where the wide part is a generalized linear
model that performs memorization while the deep part is a feed-
forward neural network that performs generalization. Starting
from Wide & Deep, two trends have emerged in the innovation
of industrial-scale recommendation models. First, the interac-
tion between higher-order features and lower-order features is
increased, so that feature representation can be performed more
accurately. A typical framework of this kind is DeepFM [7],
which improves on WDL by combining factorize machines
(FM), in which the FM module and deep module share the same
features to avoid feature engineering. Second, by introducing
the attention mechanism, recommendation models can handle
time-sequential features and derive the hidden user interests
behind the historical behavior. A typical framework is DIEN [9],
which incorporates the GRU (Gated Recurrent Unit) module to
model the evolution of user interests.

B. Motivation

We make three key observations on the characteristics of
recommendation models training on CPUs with new perfor-
mance opportunities. The experimental setup can be referred
to in Section IV-A with evaluated models shown in Table I.

Observation 1 (Expensive Feature Processing) - Commonly
used datasets for recommendation models are always huge [15],
[16], leading to feature processing as one of the bottlenecks when

TABLE I
MODELS USED FOR EVALUATION

Fig. 3. Illustration of the training time breakdown of typical recommendation
models. The time for each model is divided into three parts: feature process-
ing, feature interaction, and the overlap between the two (overlapped). The
values on each bar represent the absolute latency incurred during the overall
execution.

Fig. 4. Partial timeline of elm-WDL performing feature processing.

training these models. Fig. 3 shows the breakdown of the training
time of typical recommendation models when using the Deep-
Rec engine, where the feature processing time is higher than 20%
for most of the models. Specifically, the feature processing time
of elm_y_long-WDL and elm-DeepFM become even higher for
93.73% (∼535.47 seconds) and 85.95% (∼1,351.31 seconds).
Besides, amz-DIEN contains an RNN module, resulting in a
longer feature interaction time. Although its data processing
part only accounts for 6.55% of the full training process, it is
still a significant overhead in absolute terms (∼14.43 seconds).
Figs. 4 and 5 show more detailed timelines of the feature pro-
cessing process for elm-WDL and elm-DeepFM, respectively.
The horizontal axis represents the execution time, whereas the
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Fig. 5. Partial timeline of elm-DeepFM performing feature processing.

vertical axis depicts different execution threads. As shown in
Fig. 4, in feature processing, the StringSplitV2 operator is called
frequently (light red color blocks with black border). This arises
from the fact that the inputs of recommendation models contain
a large amount of string-type sequential data, among which the
historical features such as shop_id_list and item_id_list need
to be split first. The splitting process will use StringSplitV2
operators frequently, which generates non-negligible time con-
sumption. Besides, as shown in Fig. 5, the OneHot operator is
another hotspot operator in the feature processing (light red color
blocks with black border). Specifically, OneHot operators are
closely related to the feature column, which is an effective way
to process word and ID features in the field of deep learning to
map sample features into model-acceptable data for end-to-end
training. In recommendation models, an indicator column is
commonly used to convert the sparse tensor obtained from the
categorical column into a dense tensor in the form of one-hot
or multi-hot. As the indicator column adopts the encoding of
one-hot, OneHot operators become a performance bottleneck in
feature processing and even in the whole training process.

Observation 2 (Suboptimal Inexpensive Operator Scheduling
Policy) - We observed a large number of inexpensive operators
with concentrated execution and short running time in some of
the recommendation models when using DeepRec engine. For
example, in kaggle-DeepFM, the number of inexpensive opera-
tors is as high as 474 and the execution time accounts for 13.31%.
Besides, by analyzing the timeline of each model, we found
that most of these inexpensive operators are scheduled centrally
in one thread with few dependencies, missing opportunities
for concurrent scheduling. For instance, the feature processing
leverages the Variable operator for storing the embeddings.
The number of Variable operators will be considerably high if
there are a large number of features to be embedded. However,
Variable operators are independent of each other and the current
centralized scheduling strategy does not fully utilize the CPU
resources. The reason is that DeepRec is developed based on
TensorFlow, without optimizations targeting recommendation
models. For most DNN models, there are only a few inexpensive
operators (typically consume a few microseconds), therefore
TensorFlow believes it is profitable to execute these operators

Fig. 6. Normalized performance with XLA and BladeDISC compared to
TF.

within a single thread, other than executing them in parallel. This
is because the overhead incurred by the additional scheduling
outweighs the benefits gained from parallelism. However, for
recommendation models, there are a significant number of inex-
pensive operators, therefore executing these operators in parallel
becomes profitable for improving performance.

Observation 3 (Insufficient Pertinence of Compilers for Rec-
ommendation Models) - Existing deep-learning compilers can-
not handle recommendation models to generate high-performant
model implementations. Specifically, the optimization strategy
of most compilers relies on static input and output shapes, and the
dynamic shapes within the recommendation model inputs lead
to additional overheads in the compilation process. Besides, the
embedding layer and feature interaction layer of the recommen-
dation model contains a large number of fragmented and highly
parallelized operators, which are mostly fused to large operators
by existing compilers, resulting in less inter-operator parallelism
and under-utilization of multi-core CPU resources. As shown in
Fig. 6, the XLA [12] compiler leads to even worse overall perfor-
mance than native TensorFlow implementation [17] (a.k.a., TF).
Specifically, amz-DIEN and elm-WDL on XLA result in 1.90×
and 1.24×performance slowdown compared to TF, respectively.
Even the best performant elm_y_long-WDL on XLA is still
1.05× slower than TF. For BladeDISC [13], although it supports
dynamic shapes, it also faces challenges posed by fragmented
and highly parallelized operators of recommendation models. In
addition, it only supports older versions of TensorFlow, leading
to further performance degradation. Specifically, compared to
TF, it exhibits a speedup of 1.13× only on amz-DIEN, while
performing poorly on other models, with even a 2.18× slow-
down on elm-WDL. Given the importance of recommendation
models in business production, it is worthwhile to make the effort
to optimize them manually.

In sum, the observation 1 shows the hot spots in the whole
process of recommendation model training and reveals an oppor-
tunity for operator optimizations within feature processing. The
observation 2 shows that there are a large number of inexpensive
operations in the recommendation model training process which
can be scheduled concurrently to further improve the training
performance. The observation 3 illustrates the incompatibility
of existing deep learning compilers when dealing with recom-
mendation models and raises the need for manual optimization.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 18,2024 at 18:02:33 UTC from IEEE Xplore.  Restrictions apply. 



754 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

III. METHODOLOGY

To mitigate the inefficiencies observed above and achieve
outstanding performance on recommendation model training,
we propose AtRec, a model training system tailored for vast
kinds of contemporary recommendation models with a bunch
of operator-level, graph-level, and runtime-level optimizations.
Specifically, we systematically identify and conduct in-depth
analyses of bottlenecks in feature processing and feature inter-
action. To improve training efficiency, we use operator-level and
graph-level joint optimizations to eliminate redundant compu-
tations and memory accesses. To improve runtime performance,
we leverage runtime batching to achieve efficient inexpensive
operator scheduling. Moreover, we also perform additional aux-
iliary optimizations based on a few heuristic observations to fur-
ther improve the end-to-end training efficiency. We implement
the optimizations based on DeepRec, a recommendation engine
derived from TensorFlow. A few optimizations for embedding,
computation graph, and training runtime, which is orthogonal to
our optimization approaches, have already been integrated into
AtRec.

A. Feature Processing Optimization

1) Operator-Level and Graph-Level Joint Optimization of
StringSplit: As mentioned in observation 1, historical sequen-
tial features are first split by StringSplitV2 operators during
the feature processing of the recommendation model, whose
overhead is proportional to the length of the string to be split.
Specifically, the built-in implementation of StringSplitV2 in Ten-
sorFlow receives strings of arbitrary length as the delimiter splits
the original string by repeatedly locating the next occurrence
of the delimiter, and applies string slicing based on located
indices. However, commonly used datasets in existing industrial
recommendation models (e.g., Alibaba elm dataset [18]) use
only single-character delimiters (e.g., semicolon). Unlike strings
with variable lengths, the occurrences of a single character in
a given string can be obtained using vectorized comparison
operation, thus improving the throughput of the splitting process.

Therefore, we utilize this opportunity by implementing a vec-
torized version of StringSplitV2 powered by AVX512. Specif-
ically, as shown in Fig. 7, we load 64 bytes of the original
string into a 64 × int8 512-bit zmm register at a time ( 1©),
broadcast the delimiter character into another 64 × int8 512-bit
zmm register ( 2©), and perform a vector comparison between
two vector registers to obtain a 64-bit mask representing the
separator’s occurrences ( 3©). Finally, the string-splitting process
is completed by iterating through the delimiter indices in the
mask using a series of basic operations composed of a CTZ
(count tailing zeros) intrinsic and a logical bit shifting ( 4©).

Moreover, there are subgraphs containing many operators
with short execution times for sequence feature processing. As
shown in Fig. 8, there are three frequently executed subgraphs
during the training of the recommendation model, including
numerical data averaging subgraph, long sequence truncating
subgraph, and categorical feature hash bucketing subgraph.

Numerical data averaging subgraph is used to process nu-
merical historical data such as price_list, hours_list, and so on.

Fig. 7. Implementation process of the vectorized version of StringSplitV2.

Fig. 8. Illustration of three inefficient subgraph patterns that frequently exe-
cuted in the feature processing, including 1© numerical data averaging subgraph,
2© long sequence truncating subgraph, and 3© categorical feature hash bucketing

subgraph.

Specifically, for substrings split by StringSplitV2, a SparseTo-
Dense operator converts the sparse features into a dense format,
and then a StringToNumber operator converts the dense string
features into tensors of a numerical data type. Afterward, a
Sum operator is called to sum the features up. Meanwhile, a
Sequence Length operator first obtains the length of substrings.
Then an ExpandDims operator expands the dimension of the
length tensor and a Cast operator converts its data type to float32.
Finally, a RealDiv operator divides the sum by length to obtain
the average value. As shown in Fig. 8 1©, the whole process
is sequential while introducing multiple small operators, which
causes unnecessary memory and scheduling overheads.

Long sequence truncating subgraph processes long string data
such as historical item IDs and historical categorical features
that exceed the maximum length configured for the sake of
memory limitation or model scale. Specifically, as shown in
Fig 8 2©, StringSplitV2 is first leveraged to split the strings,
and then SparseSlice is used to truncate the resulting tensor to
the specified length limit. However, the truncation can also be
achieved by early stopping StringSplitV2 once after the specified
number of tokens have been processed, eliminating redundant
string splitting on truncated parts.

Categorical feature hash bucketing subgraph processes data
containing a large number of categorical or numerical features
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Fig. 9. Example of the Onehot+Sum operator fusion process.

in two phases as shown in Fig. 8 3©. Specifically, StringSplitV2
first splits the strings into tokens, then these tokens are scattered
into different corresponding hash buckets by their hash values
(a.k.a., StringToHashBucketFast). However, the tokens can be
directly hashed and assigned to hash buckets once it is split
from the strings for better data locality, reducing the overhead
of storing the intermediate results.

Based on the above insights, we apply fusion optimizations of
sequence feature processing to replace the identified inefficient
subgraphs above with high-performance fused operators, as
shown in Fig. 8. AtRec searches the whole graph of feature
processing for the above three subgraph patterns and applies
operator fusion if possible.

2) Onehot-Sum Redundant Computation Elimination: The
outputs of sequence feature processing are then fed to the
embedding layer for further processes. Embedding layers are
widely used in recommendation models to transform sparse
high-dimensional features into dense low-dimensional features.
One-hot encoding is one of the most common encoding methods
within embedding layers, allowing different words to remain
relatively independent while computing the correlation between
them. However, although the OneHot operator has good scalabil-
ity for parallelization, it involves a large number of computations
to get a one-hot embedding vector with significant memory
allocation. Besides, each OneHot operator is often followed by
a Sum operator. Specifically, OneHot operates on the lowest
dimension, and Sum computes on the penultimate dimension,
which essentially counts the occurrences of different values
among the lowest dimension of the original tensor (a.k.a. Mul-
tiHot). Fig. 9 illustrates an example to perform OneHot+Sum
operation on a one-dimensional tensor (a.k.a., vector) with six
elements. First, we use a OneHot operator to get the transformed
one-hot embeddings, and then a Sum operator will sum the one-
hot embeddings among the penultimate axis (along the vertical
direction shown in Fig. 9) to get the final result. The whole
process requires creating a 6× 5 tensor storing the intermediate
results of OneHot, which is prodigal in memory usage for
implementing MultiHot. However, the two-stage process can be
achieved by directly counting the number of occurrences of the
elements in the original tensor. As shown in Fig. 9, the numbers

of occurrences of original element values 0, 1, 2, and 3 (which
are 1, 2, 1, and 1, respectively) are accumulated and stored to
the corresponding index of the resulting tensor as the element
values, without generating intermediate results.

Therefore, we optimize the encoding of one-hot features
with operator fusion. Specifically, we identify all the combi-
nations of OneHot+Sum operators in the computation graph by
constructing a graph fusion template and enforcing additional
restrictions to filter out combinations that should not be handled.
Then we replace all matched subgraphs with new OneHotSum
(a.k.a. MultiHot) operators. A OneHotSum operator traverses the
original tensor and counts the last dimension (i.e., the dimension
on which the previously replaced OneHot operates) and records
the result to the output tensor with the values of original tensor
elements as indices. Note that the whole counting process can
perform within the scope of a single sample and thus can
be embarrassingly parallelized with different threads handling
different samples in a batch since there is no data dependency
between any of them. We use shard provided by Eigen to slice
the task by samples and achieve intra-operator parallelism by
utilizing the Eigen thread pool. Thus, even if the computations
within a single data sample are serial, the whole process of
computations is highly parallelized.

B. Feature Interaction Optimization

1) GRU Cell Splitting: Considering the changing external
trends and internal aesthetic perceptions, users’ interests also
evolve dynamically over time. To predict users’ interests more
accurately, some recommendation models, including DIEN,
have incorporated recurrent neural network (RNN) modules
to extract temporal interest from users’ historical behavior se-
quences. Gated recurrent unit (GRU) is widely used as it can
effectively suppress vanishing gradient or exploding gradient
compared to traditional RNNs, and its computational complexity
is smaller than other RNN variants.

Due to the pervasiveness of GRU, AtRec implements highly
optimized GRU for efficient training of such recommendation
models. Specifically, as shown in the left part of Fig. 10, the
_inputs and state required by reset (r) and update (u) gates
are first concatenated. Then a MatMul operation is performed
between the concatenated input and the weight of the same size
(Wru) which represents the merger of the two gates. Afterward, a
series of operations such as Biasadd and Sigmoid are performed
on the result. Finally, the Split operation is used to divide the
results into those corresponding to the reset gate (r) and the
update gate (u). However, such Concat-and-Split approach is
redundant and unnecessary. It incurs the overheads of redundant
operators and limits parallelism in computation. We improve
the computation process by separating the reset gate from the
update gate. As shown on the right-hand side of Fig. 10, we no
longer concatenate _inputs and state, and convert the previous
large matrix multiplication into four small matrix multiplications
of (_inputs, Wr1), (state, Wr2), (_inputs, Wu1), (state, Wu2).
After the results are performed by Biasadd, Add, and Sigmoid
operations, the final results can be obtained directly without
splitting, saving unnecessary computation overhead.
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Fig. 10. Computation graph substitution of GRU cell splitting. The merged
MatMul is replaced by four independent ones. Linear transformations on _inputs
and state and computations of u and r gates are respectively decoupled from
each other to avoid concatenation and splitting overhead. The new subgraph is
equivalent to the substituted one from the perspective of computational semantics
despite the order of operations is altered.

Fig. 11. Operator fusion of Concat and Sum. Vectorization is exerted on the
kernel implementation to further accelerate the computation process.

2) Feature Concatenation Optimization: Besides, feature
embeddings of the recommendation models will be concatenated
before feeding to the MLP. If the feature embeddings generated
by the model are too large, the Concat operator will become a
performance bottleneck. For example, the elm-DeepFM model
uses indicator columns when processing the feature, and its
one-hot encoding results in large dense embeddings. Since the
Concat operator makes a full copy of all input values (i.e.,
embeddings), the large input size would lead to non-negligible
memory copy overhead. Meanwhile, the Concat operator in the
elm-DeepFM model will be followed by a Sum operator which
operates in the same dimension as the Concat operator. As shown
in Fig. 11, the Concat operator first aggregates multiple tensors,
after which the Sum operator sums along the dimension of the
aggregation, which is equivalent to traversing multiple tensors
and summing this dimension.

Therefore, we perform an operator fusion optimization to
avoid redundant memory operations. Specifically, we identify
eligible Concat and Sum operators in the model and implement a
graph fusion template and corresponding fusion rules to combine
each matched operator sequence into a single ConcatSum oper-
ator, thus saving a series of redundant memory allocation and
copy overheads introduced by the Concat operator. As shown
in the lower part of Fig. 11, the ConcatSum operator obtains

the final output by iterating over each input tensor, perform-
ing summation, and accumulating the summation results. The
summation process of the fused operator is further vectorized to
obtain higher throughput with AVX512 intrinsics.

C. Runtime Batching

TensorFlow is one of the industrial deep learning engines
commonly used for recommendation models. When developing
a scheduling policy, TensorFlow classifies all operators into
expensive and inexpensive categories based on the computation
overhead of the operator obtained by profiling. Its scheduling
logic is based on the assumption that the scheduling overhead
of dispatching an inexpensive operator to another thread is
higher than that of executing the operator in the current thread.
Therefore, during the scheduling process, the expensive op-
erators are selected and assigned to other threads, while the
inexpensive operators continue to wait for execution in the
current thread. Although this reduces the scheduling overhead of
inexpensive operators, this one-size-fits-all strategy may cause
a large number of operators to be scheduled in one thread when
the inexpensive operators are dense, blocking the execution of
later operators on the critical path and leading to inefficient
scheduling. As mentioned in observation 2, there are a large
amount of independent inexpensive operators (e.g., variable,
identity) in the recommendation model training.

Therefore, we implement runtime batching on inexpensive
operators for more efficient operator scheduling. Specifically,
we set two thresholds for the number of inexpensive operators,
including Th_m and Th_b. For Th_m, we observe that the run-
time batching is effective only when the number of inexpen-
sive operators reaches a certain level such that their execution
overhead is higher than the scheduling overhead. Therefore, we
configure Th_m so that runtime batching will be used only if
the number of inexpensive operators of the model reaches this
threshold. For Th_b, we will count the number of inexpensive
operators in the current queue during each ready node traversal.
If this number exceeds Th_b, the RunTask function is triggered to
launch another thread to directly schedule the operators currently
in the queue. Large groups of consecutive inexpensive operators
are thus dispatched evenly to multiple threads in parallel with
less blocking time. Empirically, we set these two thresholds
as 400 and 16, respectively. Fig. 12 shows a snippet of the
timeline before and after runtime batching, where the intensive
inexpensive operators before the optimization are successfully
distributed to multiple threads, effectively improving the training
performance.

D. OneDNN Rewriting Rules Adjustments

OneDNN is an open-source cross-platform performance li-
brary developed by Intel, which can effectively improve the
performance of deep learning models on multiple platforms such
as CPUs and GPUs. However, we find that some rewriting rules
in OneDNN did not match the recommendation model, failing to
achieve the expected performance results, and some even results
in significant slowdowns. Specifically, we make the following
observations: 1) the performance of OneDNN on small-size
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Fig. 12. Comparison between timeline tracings before and after runtime
batching. The model used is kaggle-DeepFM with a batch size of 512. 26 of
28 threads in the inter-operator thread pool are utilized after this optimization,
while only 1 thread is used instead without runtime batching.

MatMul is worse than the implementation in Eigen (the default
math library of TensorFlow for CPU); 2) the performance of acti-
vation operators such as Tanh and Sigmoid provided in OneDNN
is worse than that of Eigen, and its performance further deterio-
rates after being fused with the MatMul operator; 3) the Reshape
will be converted into two Const, one _MklReshape and one
_MklToTf after OneDNN’s optimization, resulting in a negative
performance gain. Based on the above three observations, we
make some adjustments to the remapper in the grappler and the
MklRewritingPass in graph optimization, including (1) turning
off the MKL rewriting optimization on small-size MatMul; (2)
turning off the MKL rewriting optimizations of Tanh, Sigmoid
and the fusion of MatMul with the two; (3) turning off the MKL
rewriting optimization on Reshape.

IV. EVALUATION

A. Experimental Setup

1) Hardware and Software Configurations: We evaluate
AtRec on a platform equipped with an Intel(R) Xeon(R) Gold
6330 CPU (28 physical cores running at 2.00 GHz, each contain-
ing two AVX512 FMA units) and 64 GB DDR4 memory. The
experiments are conducted on Ubuntu 18.04 with GCC v10.3.0.

2) Recommendation Models: The evaluated recommenda-
tion models are presented in Table I. Specifically, we conduct a
recommendation model by combining the training dataset and
the recommendation framework. As shown in Table I, we utilize
widely adopted click-through-rate (CTR) datasets as training
datasets, including Amazon book review dataset amz_book [15],
Kaggle Display Advertising Challenge dataset [19], User Be-
haviour Dataset from Alibaba [16], Alibaba cantering dataset
elm [18] and a synthesized dataset elm_y_long where the length
and proportion of historical sequences are increased based
on elm. The evaluated recommendation frameworks are open-
source frameworks widely used in academia and industry, in-
cluding WDL, DIEN and DeepFM. The combination of datasets
and frameworks constitutes the six models as shown in Table I.

3) Comparison Methods: We compare AtRec against Ten-
sorFlow (TF) [17], DeepRec [14], XLA [12], BladeDISC [13],

Fig. 13. End-to-end performance speedups of AtRec, DeepRec, XLA,
BladeDISC, and PyTorch compared with TF on all evaluated models. The
values on the bar of TF represent its absolute latency incurred during the overall
execution. Each experiment is conducted three times and the average values are
reported with error bars marked.

and PyTorch [20]. We choose the release version 2.11.0 for TF
and XLA, and the release version 2.1.2 for PyTorch. Specifically,
we conduct the evaluations to answer the following questions:

1) Compared with other engines, what is the overall perfor-
mance of our proposed AtRec?

2) How much each proposed optimization strategy con-
tributes to the overall performance?

3) How much impact do our proposed optimizations have on
model accuracy?

B. End-to-End Performance

We first evaluate the overall training performance for the
evaluated recommendation models compared with the baselines.
For AtRec, the number of threads is configured to 28 for both
inter- and intra-operator thread pools. The batch sizes used by
each model are shown in Table I. All results are evaluated three
times, with the average performance reported. Fig. 13 shows
the overall performance speedups of end-to-end training with
each evaluated method, where TF is demonstrated as the base-
line. Overall, AtRec achieves better performance than all other
benchmarks. Compared with XLA, TF, DeepRec, BladeDISC,
and PyTorch, AtRec can achieve a speedup of 1.20×–3.89×,
1.07×–3.36×, 1.08×–4.68×, 1.26×–4.27×, and 1.94×–7.55×
respectively.

Specifically, as shown in Fig. 13, the generic deep learning
frameworks TF and PyTorch are not optimal choices for the
recommendation models, as they have no specific optimization
and only optimize common operators in deep learning such as
GEMM, convolution, etc. Although the XLA has performed a
lot of compilation optimizations, it does not handle the charac-
teristics of recommendation models, including input dynamics
and high inter-operator parallelism. Therefore, XLA introduces
additional overheads and misses some parallel opportunities,
resulting in suboptimal performance result. BladeDISC only
supports older versions of TensorFlow and performs inefficiently
when encountering fragmented and highly parallelized operators
of recommendation models, leading to inferior performance.
DeepRec amalgamates various optimization techniques such
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Fig. 14. Training time per step of six engines on six models in Table I with batch sizes ranging from 512 to 5,120.

as runtime optimization, operator optimization, and graph opti-
mization for recommendation models to accelerate the training.
AtRec further incorporates more intricate and effective optimiza-
tions for better performance. Compared with TF, XLA, Deep-
Rec, BladeDISC, and PyTorch, AtRec can reach 2.04×, 2.50×,
1.85×, 2.87×, and 4.68× average speedups, respectively.

To further validate the effectiveness of optimizations within
AtRec, we evaluate the performance of each model with
different batch sizes, as shown in Fig. 14. For uba-DIEN
(Fig. 14(a)) and amz-DIEN (Fig. 14(b)), the optimization ef-
fect of AtRec is always significant as the batch size increases,
outperforming XLA/TF/DeepRec/PyTorch/BladeDISC with the
maximum speedup of 3.91×/2.75×/1.26×/5.97×/4.27× and
2.70×/1.41×/1.60×/1.95×/1.35×, respectively, which proves
the effectiveness of our optimization strategies.

For kaggle-DeepFM, the optimization is more effective when
the batch size is small, and gradually decreases as the batch size
increases, as shown in Fig. 14(c). The performance gain of this
model mainly comes from the runtime batching of inexpensive
operators. However, the time proportion in training gradually
decreases with the increase of batch size, as the computation time
of expensive operators increases significantly with the nearly
unchanged cost of inexpensive operators. In practice, model
developers rarely choose too large batch sizes due to longer
training time [21]. When the batch size grows beyond a certain
value, the training time of each epoch becomes shorter. However,
the number of epochs required to reach the accuracy target
increases at the same time, which leads to an increase in training
time. Therefore, our optimization can still effectively accelerate
the recommendation model training in practice (e.g., commonly
adopted batch sizes listed in Table I). For elm-DeepFM, as shown
in Fig. 14(f), AtRec results in a considerable optimization effect.
Specifically, compared with XLA, TF, DeepRec, PyTorch, and
BladeDISC, it gains a speedup of 2.59×–4.03×, 2.25×–3.20×,

4.12×–5.64×, 5.49×–7.57×, and 3.84×–5.13× for all evalu-
ated batch sizes.

For elm-WDL (Fig. 14(d)), AtRec still maintains notable
speedups against the best-performant implementations, where
our optimizations related to StringSplitV2 operators contribute
most of the performance improvements. However, the process-
ing time of StringSplitV2 is limited among the entire train-
ing process due to the restricted proportion of historical se-
quences to be split in the elm dataset. Moreover, with the
increase of the batch size, the proportion of StringSplitV2 re-
duces, resulting in a decreasing trend of speedup. Nevertheless,
AtRec still achieves a speedup of 1.26×–3.54×, 1.02×–3.29×,
1.03×–1.15×, 3.13×–8.89×, and 2.31×–3.67× compared to
XLA, TF, DeepRec, PyTorch, and BladeDISC respectively. For
elm_y_long-WDL (Fig. 14(e)) with longer historical sequences,
we observe that AtRec can gain a speedup of 1.19×–2.11×,
1.12×–1.64×, 1.37×–1.53×, 3.73×–5.63×, and 2.19×–2.72×
compared to XLA, TF, DeepRec, PyTorch, and BladeDISC
respectively. The percentage of StringSplitV2 operators in the
elm_y_long dataset increases for all batch sizes. Therefore, com-
pared to DeepRec, AtRec obtains higher speedups at all batch
sizes. For TF, although the maximum speedup is not improved,
the decreasing trend of speedup is slower in elm_y_long-WDL as
the batch size increases. Even at the maximum batch size, it can
still achieve a speedup of 1.21× (only 1.02× in the elm-WDL),
which illustrates the effectiveness of our optimizations. This
is also true for XLA, but the fusion optimization for XLA
is also more efficient when the percentage of StringSplitV2
operators increases, so its slowing down of the decreasing trend
is not as obvious as TF. Nevertheless, our optimization brings
significantly better performance than its fusion optimization.
We notice that PyTorch exhibits unusual poor performance
on uba-DIEN with batch size of 2,048 and kaggle-DeepFM
with batch size smaller than 1,024. The preliminary profiling
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Fig. 15. Speedups gained by each optimization on different models, values on TF are absolute latencies per step—(a) speedup of cumulative duration of
string-related operators by operator-level and graph-level joint optimization of StringSplit on elm-WDL; (b) speedup of combinations of OneHot and Sum operators
by OneHot-Sum redundant computation elimination on elm-DeepFM; (c) speedup of RNN loops by GRU cell splitting on uba-DIEN; (d) speedup of Concat + Sum
operators by feature concatenation optimization on elm-DeepFM; (e) speedup of the execution of inexpensive operators by runtime batching on kaggle-DeepFM;
(f) speedup of the end-to-end training time by OneDNN rewriting rules adjustments on uba-DIEN.

results show that the poor performance can be attributed to
the unexpected long backward propagation process. However, a
further investigation is impeded by the opaqueness of PyTorch’s
autograd engine.

C. Optimization Implications

To demonstrate the benefits of our optimizations in detail,
we further break down the end-to-end performance gains of our
optimization strategies and investigate them individually. For
each optimization, we select 1–2 models from the corresponding
network family with similar characteristics. Other models in
the same family not listed are able to gain similar performance
improvements. It is worth noting that XLA is excluded from
the system to be compared. One reason is that XLA always
performs worse than DeepRec or TF in our evaluation, making
it reasonable to compare only with DeepRec and TF to verify
the effectiveness of our optimization. Another is that XLA fuses
most of the computation subgraphs into monolithic operators,
making it difficult to analyze the performance of the computation
process we are interested in.

1) Operator-Level and Graph-Level Joint Optimization of
StringSplit: Fig. 15(a) shows the performance speedups of
only applying these optimizations. As shown in Fig. 15(a), the
effectiveness is affected by the batch size with speedups of
1.68×–5.04×. Specifically, the effectiveness of the optimization
is closely related to the length and proportion of historical se-
quences in the dataset used by the model. Generally, the more and
longer historical sequences in the training dataset result in more
significant speedups. For illustration, we lengthened the histori-
cal sequences including shop_id_list and item_id_list in the elm
dataset and increased their proportion to obtain the synthesized
elm_y_long dataset. Specifically, the elm_y_long dataset has 8×

longer historical sequences with all hashes truncated to eight
characters to offset the growth in file size. For elm_y_long-WDL,
we observe the significant increased speedups of 3.39–7.46× as
expected. Even though we have only demonstrated the results
on two models, it is notable that our optimizations are capable
of achieving comparable optimization results on other models
that have a fair amount of historical sequences as well.

2) Onehot-Sum Redundant Computation Elimination:
Fig. 15(b) illustrates the performance of OneHot+Sum with
only applying onehot-sum redundant computation elimination
(a.k.a., OneHotSum). Specifically, AtRec achieves a speedup
of about 3.5× despite the changes in batch size. DeepRec
is significantly slower than AtRec and TF due to different
reasons. Specifically, TF outperforms DeepRec because of
the more efficient Onehot operator implementation, while
AtRec eliminates redundant computations to achieve better
performance than TF. For elm-DeepFM configured as Table I,
the optimization results in an overall end-to-end training
speedup of 3.90×. Generally, the optimization can achieve a
similar optimization effect in the model using indicator columns
for feature processing.

3) GRU Cell Splitting: Fig. 15(c) shows the performance of
GRU cell splitting for the GRU forward and backward prop-
agation process. By comparing the timeline traces generated
before and after splitting, it can be seen that splitting makes part
of subgraphs starting from input in the GRU cell independent
of the previous states so that their dependencies are stripped
from the loop. This part of the subgraph includes MatMul and
BiasAdd which only involve inputs, and their results can be
computed at the beginning of the GRU loop without waiting for
the loop to iterate to the corresponding iteration, thus having a
high degree of parallelism and accelerating the loop execution.
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This optimization accelerates the entire training of uba-DIEN
and amz-DIEN with overall speedups of 1.14× and 1.44×,
respectively. Such optimization techniques are not limited to
GRU but work on all recommendation models involving RNN
with multiple gates in the recursive cell (e.g., LSTM).

4) Feature Concatenation Optimization: Fig. 15(d) shows
the performance of Concat+Sum with only applying feature
concatenation optimization (a.k.a., ConcatSum). The speedups
of AtRec decrease significantly when the batch size increases
to 1,024. The reason is that as the batch size increases, the
memory consumption of operators exceeds the cache capacity
and thus incurs additional cache miss overhead. However, our
optimizations still remain effective by achieving 1.45× perfor-
mance improvement, which can be attributed to the reduced
memory allocation and copy overhead during concatenation. For
the entire training of elm-DeepFM, the optimization achieves an
overall speedup of 1.18×. It is worth noting that the optimization
effect can be seen in all models that require concatenating
processed features, and rises as the number of features increases.

5) Runtime Batching: Fig. 15(e) shows the performance re-
sults of inexpensive operators with different batch sizes. It can be
seen that runtime batching achieves a considerable optimization
effect due to dispatching a large number of aggregated inex-
pensive operators to multiple threads. Larger batch sizes have
negative influences on the effectiveness optimization and result
in the descending curve shown in Fig. 15(e). Nevertheless, AtRec
still results in notable speedups when scheduling inexpensive
operators even with a large batch size of 5,120. Specifically,
AtRec achieves up to 4.08× speedup with a batch size of 512. For
kaggle-DeepFM, the optimization achieves an overall speedup
of 1.11×. Generally, the optimization achieves similar results
in other models with a large number of inexpensive operators
typically introduced by frequent embedding variable fetching.

6) OneDNN Rewriting Rules Adjustments: We performed
an end-to-end performance comparison between AtRec, AtRec
w/o OneDNN adj. (AtRec without OneDNN rule adjustments),
and other engines. The results are shown in Fig. 15(f). In
our evaluations, the OneDNN rule adjustments deliver notable
performance optimizations for small-size matrix multiplication,
which is common in the recurrent cell of the RNN recommenda-
tion model (e.g., DIEN). Taking uba-DIEN as an example, the
OneDNN rule adjustments further achieve a maximum speedup
of 1.10× for AtRec. The optimization effect is influenced by
the batch size, with larger batch sizes resulting in increased
matrix multiplication size and decreased speedups. Generally,
these adjustments can be applied selectively by automatically
choosing the implementations of the best performance based on
the parameters and type of operators, and we leave this as future
work.

In sum, AtRec proposes optimizations from multiple perspec-
tives and scales at the operator level, graph level, and system
level for the complete process from feature processing to feature
interaction, covering a variety of recommendation models. It
achieves considerable speedup ratios on optimization targets and
has significant improvements in the end-to-end performance of
overall model training. The evaluated models are highly rep-
resentative ones as most of today’s prevailing recommendation

Fig. 16. Loss curves of AtRec, DeepRec, TF, and XLA during the process of
training elm-DeepFM with a batch size of 4,096.

TABLE II
AUC OF TRAINED MODELS

models are derived from or related to the evaluated models. For
those models that are not evaluated due to the huge diversity of
recommendation models, we believe that the proposed optimiza-
tions in AtRec are still beneficial and applicable, making AtRec
expected to effectively accelerate the model training and reach
a comparable performance with or even outperform existing
model training engines including DeepRec and TF.

D. Accuracy

All the designs and optimizations in AtRec preserve the orig-
inal semantics of models and should have a minor impact on the
model training process and accuracy results. Fig. 16 shows the
loss curves training with AtRec, DeepRec, TF, and XLA with
identical hyper-parameters (e.g., batch size) on the same model.
Specifically, different engines have almost the same trend of loss
variation. The consistency of losses is further proved by that the
maximum difference in losses between AtRec and the baseline
engines (0.032) does not exceed the maximum variance observed
between any two of them (0.037). The variance exists due to the
stochastic nature of the recommendation model training itself.

We utilize AUC, the widely adopted CTR metric to evaluate
the accuracy of trained recommendation models [7], [22]. AUCs
of models trained with AtRec, DeepRec, TF, and XLA are
shown in Table II. After training with the same batch size for
the same number of iterations, AtRec obtains similar or higher
AUCs compared with XLA, TF, and DeepRec. Even in the
worst case, the difference between the AUCs of AtRec and these
three benchmarks does not exceed 0.01. Although the results
keep relatively consistent among different engines, they are
not identical. The reasons for this include floating point errors
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caused by altered computation order and the randomness intro-
duced by model parameter initialization with unfixed random
seeds. Such difference is consistent with the stochastic nature
of model training and thus acceptable. This experiment proves
that AtRec can achieve higher performance without sacrificing
the convergence and accuracy of the trained model.

V. RELATED WORK

Deep Learning Operator Library - Deep learning operator
libraries are widely used by researchers due to their efficiency
and efficacy [10], [11], [23], [24], [25], [26], [27], [28], [29].
OneDNN [10] is Intel’s open-source cross-platform deep learn-
ing performance acceleration library which provides highly
optimized implementations of deep learning building blocks. By
using OneDNN, users can accelerate programs on specific plat-
forms without writing any target-specific code. OpenBLAS [11]
is an optimized BLAS (Basic Linear Algebra Subprograms) li-
brary with many hand-crafted optimizations for specific proces-
sors. NNPACK [23] is a package for accelerated neural network
computing, which can provide high-performance convolution
layer implementations for multi-core CPUs. However, the devel-
opment of operator libraries is often arduous and cumbersome,
requiring a lot of manpower and leading to heavy development
costs. Therefore, these libraries generally only include common
compute-intensive operators(e.g., Conv, MatMul) and memory-
intensive operators (e.g., BatchNorm, Pooling), and there is
almost no specific optimization for operators which are much
more prevalent in recommendation models (e.g., StringSplit,
OneHot).

Deep Learning Compilers - There have been many efforts
to build deep learning compilers with efficiency and portabil-
ity [12], [30], [31], [32], [33], [34], [35], [36], [37]. XLA [12] in-
tegrates multiple graph optimization and parameter optimization
methods and generates fused computation graphs by compiling
the TensorFlow computation graph. AStitch [30] proposes a
compilation optimization method for coarse-grained comput-
ing integration, which automatically generates efficient code
through the joint consideration of dependency characteristics,
memory hierarchy, and parallelism. TensorIR [31] proposes a
new abstraction for tensor programs, which separates tensor
computations from loop transformations and generates high-
performance code using automated scheduling algorithms and
other optimizations. However, on one hand, they are seldom able
to support model training, while on the other hand, they cannot
effectively handle the dynamic shapes and high concurrency
of the recommendation model. Furthermore, the deep learn-
ing compiler does no targeted optimizations for characteristic
procedures and operations in recommendation models such as
feature processing and embedding, and there is still room for
improvement in performance.

Recommendation Model Training Optimizations - Re-
searchers have proposed various innovations to improve the
performance of recommendation model training [22], [38], [39],
[40], [41], [42], [43], [44], [45], [46]. Meta [38] points out the
importance of the DSI pipeline in large-scale recommendation

model training and presents data storage, ingestion, and a train-
ing pipeline for production recommendation models. Neo [40]
proposes a software-hardware collaborative system designed for
DLRMs training, using various optimization methods including
4D parallelism, hybrid kernel fusion, and software-managed
caching to achieve an efficient training process. AutoShard [41]
optimizes embedding table sharding, leverages a neural cost
model to efficiently predict the table cost, and uses deep RL to
solve the partition problem. These works focus more on training
optimization for distributed systems. Our work is orthogonal to
them, and the overall performance can be further improved by
optimizing the model training process on every single node.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a recommendation training engine
AtRec, which can efficiently train recommendation models on
CPUs. AtRec accelerates model training through operator-level
and graph-level joint optimizations and runtime optimization.
At the operator-level, AtRec identifies time-consuming operators
and optimizes them, which enables further efficient graph-level
optimizations. At the graph-level, AtRec accelerates several
inefficient subgraphs via eliminating redundant computations
and memory accesses. Moreover, AtRec also employs runtime
batching to improve runtime performance. The experiment re-
sults demonstrate that AtRec can achieve average performance
speedups of 2.04×, 2.50×, 1.85×, 2.87×, and 4.68× compared
to TF, XLA, DeepRec, BladeDISC, and PyTorch respectively.

For future work, we would like to adapt our method to
GPU-based recommendation model training. Based on our pre-
liminary studies, we have observed that the bottlenecks identi-
fied during CPU-based training persist in GPU-based training.
Therefore, we believe our proposed optimizations remain useful
in GPU-based training. Specifically, for operator-level optimiza-
tions, they can be still effective by adapting to the hardware
difference between CPU and GPU. Whereas for graph-level
optimizations and runtime batching, they are independent from
the hardware architecture, and thus can be easily applied to
GPU-based training.
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