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Abstract. With the advancement of quantum computing, verifying the
correctness of the quantum circuits becomes critical while developing
new quantum algorithms. Constrained by the obstacles of building prac-
tical quantum computers, quantum circuit simulation has become a feasi-
ble approach to develop and verify quantum algorithms. Although there
are many quantum simulators available, they either achieve low perfor-
mance on CPUs, or limited simulation scale (e.g., number of qubits) on
GPUs due to limited memory capacity. Therefore, we propose dgQuEST,
a novel acceleration method that utilizes hybrid CPU-GPU memory
hierarchies for large-scale quantum circuit simulation across multiple
nodes. dgQuEST adopts efficient memory management and communi-
cation schemes to leverage the distributed CPU and GPU memories
for accelerating large-scale quantum simulation. Our evaluation demon-
strates that dgQuEST achieves an average speedup of 403× compared
to QuEST on quantum circuit simulation with 32 qubits, and scales to
quantum circuit simulation with 35 qubits on two GPU nodes, far beyond
the state-of-the-art implementation HyQuas can support.

Keywords: Quantum simulation · Distributed GPU acceleration ·
Memory and communication optimization

1 Introduction

With the development of quantum algorithms, quantum computing has become
the most likely means to surpass the performance of traditional computing in
the future. However, it is difficult to verify quantum algorithms due to the still
early age of building practical quantum computers. Therefore, using traditional
computers to simulate the operations of quantum circuits has become one feasible
approach to develop and verify new quantum algorithms. In general, quantum
simulation methods are mainly divided into two categories, such as state vector
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(full amplitude) method and tensor network method. The scalability of the state
vector method is limited by the number of qubits, as each additional qubit will
double the memory usage. The tensor network method uses tensor shrinkage
and decomposition to avoid the exponential memory bloating, however it suffers
poor performance for deep circuits or circuits with higher entanglement. Many
quantum circuit simulation software have been developed over years, including
Qibo [3], QuEST [7], qHipster [10], AC-QDP [6], QuiMB [5], TN QVM [9],
etc. Among them, QuEST [7] is one of the most widely used high-performance
quantum circuit simulators, and a large amount of research work has been carried
out based on QuEST [1,4,8,12].

QuEST [7] is designed based on the full-amplitude quantum simulation
method and supports single-qubit gates with multiple control qubits. Among
them, the application of the qubit gate is carried out by applying correspond-
ing computations on the entire state vector in sequence. The computations on
the state vector are paired up and each pair is independent from others. There-
fore, the simulation of QuEST can be easily parallelized on GPU. However, the
parallel simulation of QuEST can only be supported on a single GPU, which
constrains the size of quantum circuit can be simulated due to the limited GPU
memory. The latest improvement on QuEST such as HyQuas [12] can speedup
the simulation on multiple GPUs. However, it fails to exploit the hybrid CPU-
GPU memory hierarchies, and thus requires more GPUs to support large-scale
quantum circuit simulation. Therefore, we propose dgQuEST, a novel accelera-
tion method that exploits hybrid CPU-GPU memory hierarchies with efficient
memory management and communication schemes to improve the performance
of large-scale quantum circuit simulation.

Specifically, this paper makes the following contributions:

– We propose a CPU-GPU hybrid memory management scheme, which effec-
tively utilizes the large capacity of CPU memory as well as the high perfor-
mance of GPU memory for large-scale quantum simulation.

– We propose a page-table based memory management scheme to manage the
qubit mapping of the entire state vector, which improves the data locality of
the state vector access for better performance.

– We propose a pipelined communication scheme to reduce the overhead of dis-
tributed memory access, which further improves the performance of dgQuEST
when scaling to multiple GPU nodes.

2 Background and Motivation

2.1 Full-amplitude Quantum Simulator

A full-amplitude quantum simulator (FAQS) stores all the amplitudes in a state
vector SV and a quantum gate can be represented as a matrix transformation.
Assume that the quantum register R has n qubits and the SV represents the
current quantum state |Ψ〉, i.e. |Ψ〉 can be represented as in Eq. (1):

|Ψ〉 =
∑

SVqn−1qn−2...q1q0 |qn−1qn−2 . . . q1q0〉 (1)
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where qi ∈ {0, 1}, i ∈ {0, 1, . . . , n − 1}. If a quantum NOT gate, which is the
same as binary NOT operations in classical computers, is applied on the xth
qubit (numbered from 0), the state vector SV will be transformed to SV ′ as
shown in Eq. (2), where qi ∈ {0, 1}, i ∈ {0, 1, . . . , x − 1, x + 1, . . . , n − 1}.

(
SV ′

qn−1qn−2...qx+10qx−1...q1q0

SV ′
qn−1qn−2...qx+11qx−1...q1q0

)
=

(
0 1
1 0

)(
SVqn−1qn−2...qx+10qx−1...q1q0

SVqn−1qn−2...qx+11qx−1...q1q0

)
(2)

Therefore, performing a single-qubit gate transformation introduces data
dependencies between elements in the state vector in pairs. In detail, the distance
of the interdependent elements in a pair is 2i when the gate performs on the i-th
qubit, which leads to poor spatial locality in memory. Besides, when a series of
quantum gates perform on different qubits separately, the data-dependent struc-
tures changes completely during each computation, leading to higher cache miss
within the existing memory hierarchy.

2.2 Optimizing FAQS on Distributed CPU Nodes

For quantum simulations that exceed the available memory, FAQS needs to
distribute the simulation to fit in the memory available on each node. In detail,
the state vector is split into blocks stored separately in each node and the entire
state vector needs to be updated when applying a transformation of a gate to
the current state. However, the interdependent data may be stored separately in
different nodes. Figure 1(a) demonstrates an example of data dependence across
nodes in a two-node distributed FAQS, where each node depends on all the
data on the other node to finish the simulation of a quantum gate on the 3rd
qubit. Figure 1(b) demonstrates a more general case when two single-qubit gates
are performed on the higher two qubits, respectively. The peer relationships are
established between nodes two by two based on the target qubit of the gate and
each node needs to obtain all the data of the peer to compute its local result.
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Fig. 1. Peer data interaction in a distributed implementation of FAQS. The simulated
quantum register is assumed to contain 4 qubits and distributed to (a) two nodes, each
storing 8 state vector elements (3 qubits), and (b) four nodes, each storing 4 state
vector elements (2 qubits), with two single-qubit gates acting on the third and fourth
qubits shown in the upper and lower halves of the graph, respectively.
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2.3 Optimizing FAQS on GPUs

There are several research works to optimize FAQS on GPUs. HyQuas combines
two existing GPU optimization methods such as ShareMem and BatchMV, both
of which take multiple gates and calculate them together to reduce memory
access. The ShareMem method loads interdependent data required by the quan-
tum gates into shared memory as a local state vector and sequentially applies
quantum gate transformations. Whereas the BatchMV method merges the gates
into a larger matrix and applies a matrix-vector multiplication between the
matrix and the local state vector. Utilizing high speed shared memory, these
two methods greatly reduce memory access overhead. HyQuas further improves
the above two methods and implements simulation on multiple GPUs with opti-
mized data transfer mechanism. However, HyQuas requires to store all data into
GPU global memory, which strictly limits the number of qubits for simulation
if the number of nodes is limited. Qibo also supports accelerating quantum sim-
ulation on multiple GPUs, but achieves poor performance and high memory
usage due to frequent data exchange between CPU and GPUs. On contrast,
dgQuEST leverages the hybrid CPU-GPU memory hierarchies across multiple
nodes efficiently, which accommodates accelerated large-scale quantum circuit
simulation.

3 Methodology

3.1 Design Overview

According to the memory hierarchy, dgQuEST applies a three-level memory
model to divide the distribution of state vectors into three top-down levels: CPU
main memory, GPU global memory, and shared memory. Figure 2 demonstrates
the overall design of dgQuEST, including memory manager, gate aggregator, task
dispatcher, executor, data reorganizer, and communicator. The memory manager
maintains the state vector in page tables. The gate aggregator is used to reorder
the quantum gates when the storage hierarchy is lowered to reduce the number
of interactions. Besides, dgQuEST also applies three-level memory model inside
memory manager and executor, and utilizes gate aggregator for circuit partition-
ing along this three-level memory model. The task dispatcher aims to assign task
blocks in main memory to different GPUs on each node. The executor performs
the actual quantum gate operations with the assistance of gate aggregator to
decide which data to load into shared memory. After computation, the data is
reorganized with data reorganizer according to the target qubits of the current
circuit and the next circuit to match the new dynamic mapping between qubits
and state vector index bits. The reorganized data is sent to the corresponding
node via communicator or written back into the current node, both with new
page numbers calculated from the result of remapping.

3.2 Page-Table Based Memory Management

To achieve efficient data exchange between nodes, we implement page-table
based memory management mechanisms and maintain a memory pool for pages.
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Fig. 2. Overall design of dgQuEST. For simplicity, data flows and control flows are
omitted except for GPU#0.

Specifically, the structure of the entire m-bits state vector index is divided into
page number (higher 2k bits) and offset (lower m − 2k bits), where the number
of page number bits is always even and is divided into two halves. The lower half
and the page offset jointly form the GPU explicit memory index, whose value
range is the memory block size of a GPU calculation task. The higher half is
further divided into the task number for task division. In general, the page is the
smallest unit of data migration. Using page tables has the following advantages:
1) The page enables fine-grained buffering and scheduling for communication.
During data exchanges, once the node successfully transfers a page in the main
memory to the GPU global memory, the page can be released to receive new
data. Thus, only a small number of caching pages are needed for data exchange,
which effectively reduces the memory overhead for communication. 2) The log-
ical page mapping of the page table enables flexible dynamic qubit mapping for
better data locality. Specially, when the qubit mapping change occurs only in
the page number part of the state vector index, the dynamic mapping can be
completed only by modifying the page table without any data exchanges. 3)
The page number provides sufficient information (task number and node index)
of the data block for the communicator to confirm the destination and source of
the data during data exchange.

3.3 DAG-Based Gate Aggregation

dgQuEST analyzes the dependencies between quantum gates in a quantum cir-
cuit to construct a directed acyclic graph (DAG). Then dgQuEST applies a
heuristic algorithm to derive several aggregated sub-circuits from the DAG. In
general, gate aggregation reorders the quantum circuit and splits it into as few
sub-circuits as possible under the premise that the number of target qubits of
each sub-circuit does not exceed a given threshold.

DAG Construction - Each node in the DAG corresponds to a quantum
gate in the quantum circuit and each directed edge indicates a directed depen-
dency between the quantum gates. We assume that the control qubit set of
the quantum gate corresponding to node P is CP and the target qubit set is
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TP . For all nodes A and B such that A appears earlier than B in the original
execution order, there is a directed edge from A to B, iff there exists a qubit
x ∈ (CA ∪ TA) ∩ (CB ∪ TB) such that for all gate C appears between A and
B, x �∈ CC ∪ TC . Therefore, for all nodes in the constructed DAG, the quan-
tum gate corresponding to one node must be calculated before all the quantum
gates corresponding to its directed linked nodes. All computation reorderings
that guarantee this principle will result in mathematically equivalent quantum
circuit simulations. To construct a DAG, we maintain a vector storing heading
gates on each qubit (the last gate whose target or control qubits contain that
qubit). When adding a gate G, we add directed edges from the heading gates on
qubits in CG ∪ TG to G and make G as the new heading gate on these qubits.

Greedy Sub-circuit Partitioning - According to the three-level memory
model, a lower memory level has lower data access latency and less available
number of qubits. Thus, a single quantum circuit at a higher level has to be
divided into multiple sub-circuits. Due to the high data exchanging overhead, the
execution efficiency is severely affected by the number of sub-circuits. Therefore,
dgQuEST reorders the quantum gates with greedy sub-circuit partitioning based
on the constructed DAG to reduce the number of sub-circuits when the memory
level is lowered. Specifically, successor nodes has a greater chance of having the
same target qubit as its predecessor node. Besides, since the interdependent data
introduced by each sub-circuit derived from a DAG must meet the maximum
memory capacity, dgQuEST also needs to constrain the number of target qubits.
Thus, we keep selecting a new gate with no predecessor and applying depth-first
search from it to add nodes to the sub-circuit until the threshold of target qubit
number is reached or no more nodes can be added.

Figure 3 demonstrates an example of aggregating and partitioning a quantum
circuit with 7 qubits in a three-level memory model, where the number of qubits
within the GPU global memory is 5 and the number of qubits within the shared
memory is 2. Different colors indicate the result of partitioning the circuit into
sub-circuits at GPU global memory level, and with the same color, different
patterns further indicate the result of partitioning at the shared memory level.
The actual calculation occurs at the shared memory level (the register level is
not considered), before which the data will be migrated from the higher level
into the lower level according to the partition result.

Fig. 3. A quantum circuit aggregated and partitioned during 2 memory level lowering.
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Intra-node Gate Aggregation and Fusion - For intra-node optimiza-
tion, dgQuEST utilizes shared memory on GPU and applies gate aggregators to
reorder the execution of quantum gates in two stages to reduce the amount of
both global and shared memory access. In the first stage of gate aggregation, the
quantum circuit is divided into several sub-circuits by limiting the maximum tar-
get number of qubits of the gate aggregator within the shared memory capacity.
The second stage of the gate aggregation (a.k.a., gate fusion) gathers the quan-
tum gates of the same target qubit by limiting the number of target qubits to 1,
which enables computations with continuous targets. These two stages of gate
aggregation further improve the data reuse within shared memory and register
during execution.

3.4 Remap-Based Data Reorganization

For better locality, we ensure the data dependency of a global-memory-level
sub-circuit is within global memory level by remapping qubits to different state
vector index bits and reorganizing data. The remap-based data reorganization
involves three stages, including qubit remapping, in-page data reorgani-
zation, and page remapping. Qubit remapping dynamically remaps the
independent qubits into higher memory address bits according to the data depen-
dency obtained by the gate aggregation. In-page data reorganization rear-
ranges the data within the offset bits in the page to adapt the new mapping,
which is accelerated by GPU for better performance. Page remapping reor-
ganize the data within the page number bits in the page by modifying the page
table with new mappings for each page. The qubit remapping and in-page
data reorganization are performed after the quantum gate calculation and
before sending or writing back the results, while page remapping is handled
during sending or writing back the results.

Figure 4 demonstrates an example of remap-based data organization with
16 qubits, where the upper 8 bits of state vector index represent page number
and the light-colored bits are the qubits without any data dependency. The
remapping process can be divided into several steps in 2 scopes: 1) remapping
in the scope of the index bits inside a task block within GPU memory, where an
in-page data reorganization is needed to keep the consistency between data and
the new mapping; 2) remapping in the scope of page number, where page table
is changed to match the new mapping. After remapping, qubits involved in the
next sub-circuit are all mapped to offset bits inside a GPU task data block and
data dependencies are always inside the block.

3.5 Pipelined Communication

In dgQuEST, there are the following forms of data migration: 1) Loading a page
from the main memory to GPU global memory (load); 2) Writing back a page
from the GPU global memory to the local node (write back); 3) Sending a page
from the GPU global memory to a remote node (send); 4) A page is received
from a remote node and written to the main memory (receive).
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Fig. 4. An example of qubit remapping to state vector index bits. The remapping con-
sists of 3 steps. In-page data is reorganized according to the in-page remapping. Remap-
ping of qubits in page table number scope pages remapping during data exchanging
between tasks.

Figure 5 demonstrates the pipelined communication processes. Among them,
the load, write back, and send processes of each GPU are controlled by indepen-
dent threads. The receive operation of each node is controlled by a dedicated
thread. The reorganize operation rearranges the data in memory to match the
qubit mapping of the next sub-circuit. Since write back occurs more frequently,
asynchronous send and write back operations are adopted to allow overlapping—
GPU threads launch asynchronous send of a page targeted to other nodes and
continue to perform short-running write back operations to avoid blocking the
execution of the next tasks. Therefore, the followed task execution can over-
lap with the other three data migration forms of the previous task, which can
significantly improve communication efficiency.
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Fig. 5. An execution scenario with data transfer pipelined

4 Evaluation

4.1 Experimental Setup

To evaluate the capability and performance of large-scale quantum circuits sim-
ulation by dgQuEST, we simulate various circuits with dgQuEST on our two-
node GPU cluster. Each node consists of two Intel Xeon E5-2680 v4 CPU, two
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NVIDIA V100 32 GB GPU and 384 GB DDR4 DRAM. Two nodes are connected
with 40Gb/s FDR Infiniband. For comparison, we choose QuEST v3.2.1 [7] and
Qibo v0.1.6.dev2 (with qibotf library v0.0.2) [3]. We did not compare with GPU
accelerated QuEST and HyQuas as they both fail to run the evaluated circuits
due to out-of-memory error. For evaluated quantum circuit datasets, we use
qubits ranges from 32 to 34 with 1) randomly generated circuits (RD), 2) a
combination of one GHZ and one QFT circuit (GQ), 3) BV circuit (BV ), and
4) supremacy circuit (SP). Circuits 3) and 4) are exported from Cirq [2].

4.2 Overall Performance

We simulated the above-mentioned quantum circuits with 32 to 34 qubits using
QuEST, Qibo, and dgQuEST on our GPU cluster. The simulation times and
the speedups against QuEST are demonstrated in Fig. 6. Note that Qibo can
only run on one node and it fails to simulate circuits with qubits larger than 32
due to out-of-memory error. Both the execution of QuEST and dgQuEST are
distributed on two nodes. As shown in Fig. 6, dgQuEST exhibits 455x (geomean)
speedup on 34 qubits compared to the CPU implementation of QuEST, and 120x
(geomean) speedup on 32 qubits compared to Qibo on one node. The significant
performance improvement comes from two folds. One is our three-level CPU-
GPU hybrid memory model and corresponding page-based memory management
approaches can effectively utilize the large memory capacity of DRAM with
less swapping overhead, which enables GPU acceleration for larger-scale qubit
simulations. The other is our data reorganization and pipelined communication
can largely reduce both the memory and time overhead for data exchanges.
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Fig. 6. Overall execution time of QuEST, Qibo, and dgQuEST and the speedup of
dgQuEST against QuEST. Both execution times and speedups are shown in log scale.

4.3 Qubit Scalability

To prove the scalability of the number of simulated qubits within a given mem-
ory capacity, we simulate GZ quantum circuits with qubits ranging from 31 to
35 on both one node (1n2g) and two nodes (2n4g) with dgQuEST. The execu-
tion times of each evaluated circuit with different configurations are shown in
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Fig. 7, where the execution times increase linearly when the simulated number of
qubits increases with both one node and two nodes execution. For more detailed
comparisons, we analyze the memory usage of the state vector, QuEST, and
dgQuEST during distributed simulations of 31–35 qubits, as shown in Fig. 8.
The results demonstrate that dgQuEST sharply reduces the memory require-
ments of simulating distributed on multiple nodes by nearly two folds due to
the page-table based memory management. The memory used by dgQuEST is
nearly equal to the required memory for the state vector. Therefore, the saved
large amount of memory further contributes to simulating more qubits within
the same memory capability.
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4.4 Strong Scalability

To demonstrate the strong scalability of dgQuEST, we compared the execution
time of each circuit simulation on one node and two nodes. As shown in Fig. 9,
most of the evaluated simulations exhibits poor or even negative scalability when
it distributes to more nodes. Although the gate aggregation can minimize the
data exchanges between nodes and pipelined communication enables overlap-
ping of computations and communications, the data exchange still becomes a
bottleneck when the quantum circuit is not deep enough (e.g., only 79 gates in
BV-32 ). Therefore, our approaches to reduce the distributing memory overhead
as well as support more qubits regardless of the limited GPU memory capacity
can significantly reduce the required nodes for each quantum simulation and
thus contribute to overall performance improvement.

4.5 Sensitivity Analysis on Page Size

The page size affects the performance of dgQuEST, as shown in Fig. 10. In gen-
eral, a larger page size leads to a larger task block and potentially fewer data
exchanges, while it makes the execution of each task longer and results in less
pipeline utilization. In contrast, with a smaller page size, each execution takes
less time and the data exchange pipeline is more utilized, but it will result in
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more sub-circuits. Therefore, it is hard to give the best choice for all circuits
as it depends on the specific circuit to tune page sizes for best performance.
Therefore, we choose the page size with the best performance in our evaluation.

5 Related Work

Several optimizations have been proposed for the full-amplitude quantum sim-
ulation. qHipster [10] optimizes the performance with SIMD, thread allocation,
communication, multi-threading, and cache blocking. JUQCS [11] provides the
GPU accelerated implementation, which reduces communication overhead by
relabeling global and local qubits. Qibo [3] utilizes TensorFlow and custom oper-
ators for its backend and supports acceleration with multiple GPUs. HyQuas [12]
utilizes both shared memory and batch matrix-vector multiplication to accelerate
the quantum simulation, and it implements muiti-GPU simulation and optimizes
the communication between GPU. However, HyQuas fails to exploit the hybrid
CPU-GPU memory hierarchies to support large-scale quantum circuit with more
qubits on limited number of nodes. Whereas, Qibo cannot utilize distributed
GPUs across multiple nodes. Different from above approaches, dgQuEST lever-
ages the memory capacity of both CPUs and GPUs across distributed nodes for
large-scale quantum circuit simulations with accelerated performance.

6 Conclusion

In this paper, we propose dgQuEST, a novel acceleration method that utilizes the
CPU-GPU hybrid memory hierarchies for large-scale quantum circuit simulation.
dgQuEST adopts efficient memory management and communication schemes for
better memory access performance and reduced communication overhead across
distributed GPU nodes. The experiment results demonstrate that compared to
QuEST, dgQuEST can achieve an average speedup of 403× when simulating
quantum circuit with 32 qubits. In addition, dgQuEST can easily scale to quan-
tum circuit simulation with 35 qubits on two distributed GPU nodes, far beyond
the state-of-the-art GPU implementation such as HyQuas can support.
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