
Exploiting Input Tensor Dynamics in Activation
Checkpointing for Efficient Training on GPU

Jianjin Liao1†, Mingzhen Li1†, Hailong Yang1�, Qingxiao Sun1, Biao Sun1, Jiwei Hao1, Tianyu Feng1

Fengwei Yu2, Shengdong Chen2, Ye Tao2, Zicheng Zhang2, Zhongzhi Luan1, Depei Qian1
1 Beihang University, Beijing, China
2 SenseTime Research, Beijing, China

{liaojianjin,lmzhhh,hailong.yang,qingxiaosun,biaosun,jiweihao,ty feng,07680,depeiq}@buaa.edu.cn

{yufengwei,chenshengdong,taoye1,zhangzicheng}@sensetime.com

Abstract—Larger deep learning models usually lead to higher
model quality, however with an ever-increasing GPU memory
footprint. Although several tensor checkpointing techniques have
been proposed to enable training under a restricted GPU memory
budget, they fail to exploit the input tensor dynamics due to
diverse datasets and subsequent data augmentation, and thus
leave the training optimization on table. In this paper, we propose
Mimose, an input-aware tensor checkpointing planner respecting
the memory budget while enabling efficient model training on
GPU. Mimose builds a lightweight but accurate prediction model
of GPU memory usage online, without pre-analyzing the model.
It generates a tensor checkpointing plan based on per-layer
memory prediction and applies it to the training process on
the fly. Our experiments show that Mimose achieves superior
training throughput compared to state-of-the-art checkpointing
frameworks under the same GPU memory budgets.

Index Terms—model training, GPU memory, tensor check-
pointing, input dynamics

I. INTRODUCTION

Deep learning (DL) models are important and indispensable

building blocks in various fields, such as image classification,

object detection, natural language processing (NLP) and etc.

DL models are prevalently becoming larger to achieve higher

quality, with such trend expected to continue [1], [2]. Training

large models necessitate an ever-increasing GPU memory

footprint, which can hardly be satisfied by the slow growth

rate of GPU memory capacity. The unsatisfied demand for

training large models due to limited GPU memory prevents DL

practitioners from experimenting and innovating cutting-edge

models, thereby impeding the rapid advance of the DL field.

Previous works [3]–[6] have reported that, the GPU memory

usage during model training is dominated by the intermediate

activation tensors (activations in short).

Activations are intermediate outputs generated by DL op-

erators in the forward pass, and then kept in GPU memory

until consumed to calculate the gradients in the backward

pass. To reduce the memory occupancy of activations, a large

number of techniques have been proposed. These techniques

can be classified into three categories such as compressing [7]–

[12], swapping [13]–[15], and checkpointing [5], [6], [16]–

[18]. Compressing attempts to convert activation into its low-

bit counterpart, and thus may affect the convergence and the

† Contributed equally. � Corresponding author.

model quality, because the iterative nature of training may lead

to uncontrollable error propagation. Swapping offloads the

activations from GPU memory to CPU DRAM in the forward

pass, and asynchronously copies them back in the backward

pass. Unfortunately, the copying overhead is quite high due to

the limited PCIe bandwidth. Checkpointing allows dropping

the activations in the forward pass and re-generating them by

replaying the forward computation (i.e., re-computation) in the

backward pass. In general, due to the lower overhead of re-

computation than data transmission between GPU and CPU,

checkpointing is widely adopted by popular DL frameworks

such as TensorFlow [5] and PyTorch [16], [18] to reduce GPU

memory consumption during model training.

The fundamental of a checkpointing technique is the GPU

memory planner that decides when and where to drop and

re-compute the activations. Depending on whether it requires

prior knowledge of the model structure, the GPU memory

planner can be further divided into static planners (e.g., Check-

mate [5]) and dynamic planners (e.g., DTR [16]). The static

planners commonly adopt a conservative plan regarding the

largest input tensor to avoid GPU memory over-subscription.

Whereas, the dynamic planners reactively checkpoint the acti-

vations with the lowest re-computing costs in a greedy manner,

when running out of GPU memory. However, both types

of planners fail to consider input dynamics during training,

thus unnecessarily sacrificing the training performance for

reduced GPU memory occupancy. For example, when the

input size is small and the GPU memory is sufficient, the

conservative checkpoint decisions of static planners regarding

largest input size result in massive redundant computation, and

thus unnecessarily degrade training performance. Whereas,

due to the lack of holistic information about model structure

and training process, dynamic planners may fail to generate

optimal checkpointing plans, and thus achieve low training

performance (details in Section III-B).

The input dynamics with changing activation sizes exist

during training due to the diverse datasets and subsequent

data augmentation, which results in changing GPU memory

footprint during model training (details in Section III-A).

Regarding the datasets, object detection datasets (e.g., COCO)

contain many images with varying aspect ratios [19], whereas

NLP datasets (e.g., SWAG) contain many multiple-choice

156

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPS54959.2023.00025

20
23

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 (I
PD

PS
) |

 9
79

-8
-3

50
3-

37
66

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

54
95

9.
20

23
.0

00
25

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 09:49:43 UTC from IEEE Xplore. Restrictions apply.

questions with varying text sequence lengths. Regarding the

data augmentation, an image can be resized to a random

size [20]–[22] to improve the model robustness. Whereas, a

text sequence can be broken down into a sequence of word

tokens during tokenization. Besides, several images/texts are

then collated into a mini-batch after padding and truncation.

However, the above input dynamics can hardly be exploited

by current checkpointing planners to improve training perfor-

mance without over-subscribing the GPU memory. To leverage

the input dynamics, the checkpointing plans need to be deter-

mined during runtime adapting to the input dynamics, and then

applied to the training process on the fly in order to further

improve the performance.

Moreover, in many production scenarios, the DL models

need to be frequently fine-tuned to fit the latest collected

dataset to avoid the so-called ”concept drift” [23] and improve

the serving quality continuously. In such case, it is infeasi-

ble to obtain the input size distribution of the dataset and

perform checkpointing plan in advance. In addition, consid-

ering the training pipeline, the checkpointing planner has no

prior knowledge of input size distribution, data augmentation

process, model structure, and model parameters, and thereby

cannot predict the GPU memory usage of the model accurately.

In sum, to exploit the performance opportunity of input tensor

dynamics during model training, a checkpointing planner

should address the following challenges: 1) it should collect

the GPU memory usage online without prior knowledge, 2)
it should predict the per-layer GPU memory usage accurately

given arbitrary input tensor, and 3) it should generate and apply

checkpointing plans adaptively during runtime based on the

prediction of GPU memory usage. Putting the above together,

the introduced overhead should be trivial without offsetting

the performance benefit of exploiting input dynamics.

In this paper, we propose Mimose1, an input-aware check-

pointing planner respecting the memory budget, while en-

abling efficient model training on GPU. The key feature

of Mimose is that it dynamically adjusts the checkpointing

plan according to the predicted memory usage of current

input tensor, in order to maximize GPU memory utilization

and minimize the performance overhead. Mimose builds a

lightweight but accurate prediction model of GPU memory

usage online without pre-analyzing the model, to achieve the

sub-millisecond-level checkpointing planning for each input

tensor. It generates a tensor checkpointing plan and applies

the plan on the fly during the training process. By exploiting

the input tensor dynamics, our experiments show that Mimose
achieves superior training performance compared to state-of-

the-art checkpoint planners under the same GPU memory

budget.

Specifically, this paper makes the following contributions:

• We propose an online GPU memory estimator that pre-

dicts the memory usage of activation tensors for given

input size. The estimator is constructed during model

1Mimose is open source at https://github.com/buaa-hipo/mimose-mmdet
and https://github.com/buaa-hipo/mimose-transformers.

training without prior knowledge of the model structure

or the input size. After negligible training iterations, the

estimator can offer accurate enough memory prediction

to facilitate generating checkpointing plans.

• We propose an effective checkpointing scheduler that

generates and applies the checkpointing plans based on

the memory prediction during runtime. In addition, it

adopts a caching strategy to avoid re-generating the

checkpointing plans for repeated input sizes redundantly.

• We develop the Mimose framework with the input-aware

checkpointing planner for efficient training on GPU.

Mimose works entirely online, and does not rely on either

model pre-analysis or ahead-of-time memory planning.

Our experiment results demonstrate that Mimose can

achieve better training performance than state-of-the-art

checkpointing frameworks.

II. BACKGROUND

A. Training Pipeline

Deep learning training often includes many iterations, with

each iteration processing a mini-batch containing a few sam-

ples. In each iteration, samples are processed in pipeline

as shown in Figure 1. Samples are first loaded from the

training dataset and preprocessed through data augmentation

and collation to form a mini-batch input tensor. During the

data augmentation phase, for NLP tasks, text samples are

collected from various sources with diverse text lengths.

After tokenizing, samples are split as tokens and converted

into sequences (e.g., input ids). The sequence length varies

across samples. For object detection tasks, image samples are

collected with different sizes and aspect ratios. And the state-

of-the-art models, such as DETR [20], Sparse R-CNN [21],

and Swin Transformer [22], leverage the multi-scale resizing

to improve the robustness, which randomly resizes the image

samples such that the shorter side is between 480 and 800

while the longer side is at most 1,333. Besides, the scaling

keeps the aspect ratios unchanged. Then during the data
collation phase, smaller samples in a mini-batch are padded to

match the largest sample, whereas the samples too large to be

handled are truncated smaller. The pre-processed samples with

uniform shapes are then collated to an input tensor. Note that

the input tensor sizes can fluctuate across iterations due to the

diversity of datasets and the flexibility of data augmentation.

During the training phase, the input tensor is used in con-

junction with the model parameters to produce a set of scores,

a process known as the forward pass. During the forward pass,

the activation tensors are generated successively and stored in

GPU memory for reuse in the backward pass. At the end of

the forward pass, a train loss is derived by comparing the

produced scores with the desired scores. After that, the loss is

propagated through the entire model to compute the gradients

of the model parameters, a process known as the backward
pass. During the backward pass, the activation tensors are

deallocated immediately once corresponding gradients are

derived. Eventually, the gradients are scaled by a learning rate

and used to update the model parameters.

157

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 09:49:43 UTC from IEEE Xplore. Restrictions apply.

text
sample

text
sample

input_ids

tokenizing input_ids
[sample0,
sample1,

…]
image

sample

image
sample

multi-scale
resizing

(keep ratio)

data augmentation data collation

padding &
truncation

training

input tensor
wi dynamic size

diverse samples

resized
image

resized
image

forward

backward

model
update

Fig. 1: Input tensor dynamics in the training pipeline, which

is mainly caused by the dataset and data augmentation.

B. Checkpointing Planners

Mainstream memory planners reduce GPU memory foot-

print by techniques including compressing, swapping, and

checkpointing. Compressing can have a significant impact on

convergence speed and model accuracy [14]. The time cost in-

curred by swapping is more than 2× the computation time for

most layers, which may slow down the training process [24].

Due to the above drawbacks, we leverage checkpointing

for efficient model training on GPU while respecting the

memory budget. Figure 2 shows the major difference across

existing checkpointing planners, where the red arrow indicates

the timing for generating checkpointing plan. Different from

existing checkpointing planners, our approach (i.e., Mimose)

generates the checkpointing plans at the start of each forward

pass, which can better exploit the input tensor dynamics (Sec-

tion IV). The detailed comparison between our approach and

existing checkpointing and hybrid (checkpointing+swapping)

planners is shown in Table I.

before
training

input

dataloading forward
pass

backward
pass

dataloading forward
pass

backward
pass

Sublinear,
Checkmate,

MONeT DTR

OOM OOMinput

Ours

Fig. 2: Comparison across different checkpointing planners,

where x-axis indicates the timeline. The red arrow indicates

the timing for generating checkpointing plan.

III. MOTIVATION

A. Memory Impact of Dynamic Input Size

The input size is represented by the number of elements in

the input tensor for each mini-batch. The dynamic of input

size comes from two aspects: dataset and data augmentation.

Figure 3 shows the input size distribution when training Bert-

base on SWAG, SQuAD, and GLUE-QQP datasets (batch

size of 16, 12, and 32, respectively), and T5-base on UN PC

dataset (batch size of 8). Among different datasets, the range of

input size is quite large, with 35∼141, 153∼512, 30∼332, and

17∼460 for the above four datasets, respectively. And the input

size tends to follow a certain probability distribution, such as

normal distribution and power-law distribution. Besides, the

data augmentation technique of multi-scale resizing (e.g., in

object detection tasks) may enforce pre-defined probability

distributions.

Consequently, the dynamic of input size can greatly affect

the GPU memory footprint of activation tensors. The memory

footprint during each training iteration consists of model

parameters, gradients, optimizer states, and activation tensors,

where the first three are constant regarding the model structure

and do not change across different input sizes. Figure 3 shows

the GPU memory usage under various input sizes. With input

size increasing, the memory usage increases accordingly. Be-

sides, the GPU memory usage curve is quite smooth, revealing

the possibility for accurate memory prediction with analytical

models.

B. Inefficiency of Current Checkpointing Planners

Static checkpointing planners conservatively preserve
memory for the largest input size and thus lead to low
training throughput. Training a large DL model successfully

on GPU means no OOM exception happens throughout all

training iterations. Thereby with the dynamic of input size,

static checkpointing planners have to conservatively generate

checkpointing plans regarding the peak memory usage of the

largest input size. Figure 4 illustrates the GPU memory usage

of training Bert-base model on GLUE-QQP dataset (with batch

size of 32) using Sublinear [6] under the GPU memory budget

of 3 GB. Sublinear generates the checkpointing plan targeting

the maximum input tensor size (e.g., with seqlen=300) to con-

servatively avoid OOM exception. Unfortunately, considering

Sublinear applies the above plan to a smaller input tensor (e.g.,

with seqlen=55), it unnecessarily leaves 1.2 GB memory bud-

get unused, which unnecessarily sacrifices training throughput.

It also can be seen that even without checkpointing, the peak

memory usage of a smaller input tensor may still be within the

memory budget. Due to the conservatism of static planner, it

fails to exploit the performance opportunity of input tensor

dynamics for increasing training throughput. As shown in

Figure 4, the degraded training throughput caused by Sublinear
is non-trivial, which can be as large as 35%.

Dynamic checkpointing planners lack holistic model
information and rely on runtime data collection, which
leads to non-trivial runtime overhead and sub-optimal
plans. Figure 5 shows the training time breakdown of Bert-

base on SWAG dataset using DTR [16] under the GPU memory

budget of 4.2/4.5/5/5.5 GB. However, the actual memory

usage of DTR is 6.7/7/7.5/8 GB due to the severe memory

fragmentation. In addition, DTR collects and maintains the

checkpointing cost of all participated tensors during runtime.

The overhead of maintaining the checkpointing cost takes

26.0% of the overall iteration time on average. With a lower

memory budget, the overhead can reach 40.1% at most. The

overhead of checkpoint planning also increases significantly

when given tighter memory budgets, which can reach 11.9%

at most and 7.2% on average. We notice such overhead exists

even without any activation tensor dropped. Moreover, the

158

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 09:49:43 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison between Mimose and other checkpointing planners.

Mimose DTR

[16]

Sublinear

[6]

Checkmate

[5]

MONet

[17]

Capuchin

[4]

MegTaiChi

[25]

HOME

[24]

STR

[26]

Swapping � � � � � � � � �

Checkpointing � � � � � � � � �

Dynamic input � � � � � � � � �

Dynamic graph � � � � � � � � �

Mem. fragmentation avoidance side-effect � � � � � tensor partition � �

Granularity block tensor layer layer tensor tensor tensor tensor tensor

Timing for generating plan runtime runtime offline offline offline runtime runtime offline offline

Search space holistic currently

traced tensors

segments reduced holistic holistic currently

traced tensors

holistic holistic

Search algorithm greedy greedy greedy MILP+approx. MILP greedy greedy PSO algo. MILP+approx.

Solving time short short short <1 hour hours short short short minutes

Fig. 3: Input size distributions of different

datasets (left y-axis) and GPU memory

footprints (right y-axis) when training Bert-

base/T5-base with batch size set to 16, 12,

32, 8, respectively.

Fig. 4: Memory footprint curves of

training Bert-base on GLUE-QQP

dataset using static checkpointing

planner, Sublinear. The memory

budget is set to 3 GB.

Fig. 5: Training time breakdown of

Roberta-base on SWAG dataset using dy-

namic checkpointing planner, DTR. The

memory budget is set to 4.2/4.5/5/5.5 GB

(actually 6.7/7/7.5/8 GB used).

memory fragmentation can also reduce the available memory

capacity, which makes the planning overhead further unpre-

dictable. Another drawback of DTR is that it makes check-

pointing decisions greedily when OOM exceptions happen,

which prevents generating global optimal checkpointing plans,

and thus hurts the training throughput.

IV. DESIGN

A. Design Overview

Mimose is designed to be dynamic and agile in generating

and applying checkpointing plans according to the input size

on the fly. Due to this design philosophy, Mimose exists on

the critical path of the training pipeline. Therefore, lightweight

modules are designed for Mimose to ensure low overhead.

Specifically, Mimose is mainly composed of a shuttling

online collector, a lightning memory estimator, and a respon-

sive memory scheduler, as shown in Figure 6. The shuttling
online collector collects the memory usage and forward

computation time of each layer in a given DL model (e.g.,

encoder, attention). It can perform collection online without

pre-analyzing the model even under insufficient GPU memory.

The lightning memory estimator builds a memory prediction

model based on the collected data and estimates the per-

layer memory usage for each unknown input tensor size. The

responsive memory scheduler is responsible for exploring

a near-optimal checkpointing plan based on the estimated

memory consumption and the computation time and then

scheduling the activation tensors with negligible overhead.

Mimose divides the whole training process into two phases.

During 1) sheltered execution, Mimose leverages the shuttling

online collector, which considers the DL model as a sequence

of building blocks (e.g., encoder block, attention block). It

modifies the forward calculation per block and executes it

twice in a training iteration. At the end of this phase, the

memory consumption data is fed to the memory estimator to

train the memory estimation model. In our experience, this

phase requires only 10∼30 iterations. During 2) responsive
execution, Mimose passes the augmented input tensor to the

responsive memory scheduler. If there is a checkpointing plan

of similar input size in its cache, the plan can be picked up

directly. Otherwise, when cache miss occurs, the scheduler,

together with the memory estimator, can derive the near-

optimal checkpointing plan in less than a millisecond. In

this phase, the online collector is frozen, and no additional

knowledge is required.

B. Shuttling Online Collector

If with unlimited GPU memory, we can directly profile

the model during the forward pass, for instance, compare

the timestamp and memory footprint in different stages (e.g.,

before and after the forward computation of some layers) so

159

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 09:49:43 UTC from IEEE Xplore. Restrictions apply.

record_status()
forward(…)
record_status()

time-
stamp

memory
usage

f

1st: data collection

with checkpoint:
forward(input)f

b
normal backward

Shuttling online collector

Lightning memory estimator

estimator
0-0

training

estimator
0-1

estimator
…

Responsive memory scheduler

training training

layer
0

layer
0-0

layer
0-1

layer
0-0-0

layer
0-0-1

layer
0-1-0

estimator
… input

greedy
algo

checkpointing plan

Sheltered execution Responsive execution

input

training

input input input (unknown size)

time &
memtime &

memtime &
mem

time &
memtime &

memtime &
mem

time &
memtime &

memtime &
mem

time &
memtime &

memtime &
mem

layer
0-0

layer
0-1

layer
…

2nd: memory opt

data filter

Fig. 6: Design overview of Mimose.

act act

act act

1st forward: data collection

act act

Legend
tensor in
memory

released
tensor

building
block

discard

2nd forward: memory opt

block
output

block
output

block
output

block
input

Fig. 7: Two forward passes of the

shuttling online collector.

that we can get the memory occupation and computation time

of each layer. However, given random-sized input tensors,

the activation tensors can consume large memory and cause

OOM exception. To ensure that the model can be trained

properly, we need to apply the conservative checkpointing

(e.g., Sublinear) during memory/time data collection. Besides,

there is a contradiction between applying checkpointing and

inspecting activation tensors: checkpointing means discarding

the activation tensors instantly, and thus these tensors can be

neither revisited nor inspected.

Therefore, we propose the shuttling forwarding, where the

forward pass of each layer will be executed twice, as in

Figure 7. A DL model is split as a sequence of building

blocks (e.g., encoder block, residual block). The first forward

computation is conducted as normal, but the final output ten-

sors inside this block are discarded, and the activation tensors

are dropped consequently. The second forward computation

is conducted oppositely, with all activation tensors inside

this block dropped instantly, except checkpointing the output

tensor, so as to minimize the memory usage and prepare for

the data collection for the next block. Note that the shuttling

forwarding is conducted block by block, with the activation

tensor between blocks kept in GPU memory, which also means

that its memory footprint is the same as that of Sublinear
planner [6].

As for the time overhead, compared to Sublinear, shuttling

collector only repeats the forward pass in each training it-

eration. Additionally, compared to normal training without

any memory planner, it takes more time for recomputation

in each iteration. Since the time of holistic forward pass is

generally shorter than that of backward pass, the overhead of

shuttling collector is at most twice that of normal training

iteration. Although its overhead per iteration seems large,

Mimose requires a trivial number of iterations for collection.

Mimose uses shuttling collector only when meeting new input

size, so the overhead can be reduced to O(n
N) throughout the

training process, where n represents the types of input size

and N represents the total iterations. The data provided by

the shuttling collector is used to train the memory estimator

model (Section IV-C). If combined with a lightweight but

accurate memory estimating model, the collector overhead can

be reduced to a very low level.

C. Lightning Memory Estimator

The memory estimating model lies on the critical path of

the training pipeline with Mimose. Therefore, it should satisfy

the following rules.

• It should require less training data, since its training data

has to be collected online during the sheltered execution.

• Its prediction should be fast enough, since its prediction

is the prerequisite for generating checkpointing plan.

• It should be accurate enough to provide memory usage

information to the subsequent checkpointing scheduler

for reasonable plans.

The activation tensors in model training are actually com-

posed of the output tensors of all operators in the model.

Given a static model, the number of tensors forming the

activation is constant, so we should focus on the size of each

tensor. To construct the memory estimator model between

input tensors and activation tensors, we study the relationship

between them in representative DL operators, including both

layers and neutral network structures, and we classify them

into four categories, as shown in Figure 8.

Elementwise operators, such as ReLU and add, perform

individual operations on each element of the input tensor.

Therefore, the output tensor shares the same size as the input.

Fixed-output-sized operators, convert the input tensor

to an output tensor with fixed size. For example, the

AdaptiveAvgPool operator applies an adaptive average

pooling over an input tensor and can output a tensor with

a pre-defined size.

Operators with implicit reductions, which contain reduc-

tion operations as part of the operators, such as Linear,

GEMM, Convolution, and maxPool. Specifically, as for

Linear, GEMM, the iteration input tensor only determines

their input tensor shape in only one dimension. While in

other dimensions, their shapes are carefully designed by the

DL experts after substantial hyper-parameter tuning, and thus

are specially fixed during training. Therefore, the input-output

tensor shapes have a deterministically linear correlation. As

for Conv, maxPool and other operators with shape changes

in multiple dimensions, this relationship is slightly more

complicated. But these dimension sizes have deterministic

relationships with extra variables that are also specially fixed,

160

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 09:49:43 UTC from IEEE Xplore. Restrictions apply.

such as stride, kernel size, and padding size, and thus the

resulting output tensor size still has a linear correlation.

Typical structure with a set of operators can bring more

complex memory usage relationship, such as attention,

as shown in Figure 8. The input Q, K, and V has ex-

actly the same shapes, i.e., (seqlen, hidden size), where

hidden dims is specifically fixed in model, but seqlen is

linearly proportional to the iteration input size. After the

first Matmul operation, Q × KT , a tensor with shape of

(seqlen, seqlen) is generated, which will increase the mem-

ory usage by seqlen × seqlen. Later, after the Scale and

Softmax operations, another two intermediate tensors with

size of (seqlen, seqlen) are generated. Therefore, the sizes

of these intermediate tensors are quadratically correlated to

the iteration input size. And one of them is multiplied with

input tensor Q whose shape is (seqlen, hidden size), to get a

tensor with shape of (seqlen, hidden size) as the final output.

It is obvious that the output tensor size also has a proportional

relationship with the input tensor, Q, K, or V . For this reason,

the input tensor of other subsequent layers is still linearly

correlated to the iteration input tensor, therefore, avoiding the

size explosion due to function compositions.

From the above analysis, we find that the sizes of activa-

tion tensors in a general DL model are almost polynomially

correlated to the size of input tensors, and it is at most

quadratic in most cases. Moreover, the input size of each

operator (both individual operators and structures) should be

linearly correlated to the input tensor size of the mini-batch

(i.e., current iteration) so that the memory usage of activation

tensors can be abstracted a lightweight polynomial function.

Based on the above study, we finally choose the polynomial

regression model in the memory estimator. Compared with

other complex algorithms, such as XGBoost [27], it achieves

a satisfying trade-off between accuracy and efficiency, and we

will evaluate a variety of fitting algorithms in Section VI-E.

Although the polynomial model works well for NLP mod-

els, there are still some structures that do not conform to

polynomial correlation especially for object detection models.

For example, in the 2-stage object detection, the number of

generated anchors/proposals is not fixed, because they are

mainly related to the content (e.g., how many people in an

image sample) of the input tensor. Since this fluctuation is

unpredictable, it could have a negative impact on the mem-

ory estimator. Therefore, we leave the support of objective

detection models for our future work. We perform memory

reservation for these model structure by now and plan to apply

some adaptive algorithms to the memory estimator.

D. Adaptive Memory Scheduler

The same structures in a model could have different memory

usages. For simplicity, we define the stage, which represents

a set of layers corresponding to the user-written model code

structures, and we regard stages as natural separators to locate

layers in the model. Take Swin Transformer for example, the

patch merging structure on the boundary of each stage reduces

the output tensor size of the previous stage by 50%, which

in

ReLU

out out.shape
= in.shape
= (hi , wi)

Elementwise Op Fixed-output-sized Op

w

hi

wi

in

AdaptiveAvgPool(h,w)

out
out.shape

= (h ,w)

Op with implicit reductions

W

out_features

in_features

in

Linear

out

in_features

out_features

out.shape
= (hi ,out_features)

hi

in_Q in_K in_V
seqlen

hidden_size

Matmul

X

Scale X’

Softmax X’’

Matmul out

hidden_size

seqlen

Typical Structure
(e.g., Attention)

seqlen
seqlen

seqlen
seqlen

seqlen

hidden_size

seqlen

hidden_size

seqlen
seqlen

hi

h

hi

wi

out.shape
= in.shape

= (seqlen, hidden_size)

X.shape
= (seqlen, seqlen)

hi

wi

Legend

Operator

in input
tensor

out output
tensor

X intermedi
ate tensor

hi
changing

size
W fixed size

Fig. 8: Relationship between input tensor shape and output

tensor shape of four representative operators.

leads to the step-down of memory usage in different stages.

However, the first stage of ResNet has a different structure

from the other stages, which does not show the same trend.

In addition, even for stages with the same memory usage,

checkpointing at different stages can still lead to different

peak memory usages. Bert-base mainly contains 12 encoders.

Figure 9 shows the peak memory usages of checkpointing

different encoder structures under various input tensor sizes.

Due to the characteristic of backward computation, if the

checkpointed encoder is the last encoder in the model, this

encoder’s activation has to be restored instantly once the back-

ward computation starts. At the same time, activation tensors

of other encoders are not released in order to participate

in the subsequent backward computation. It leads to a high

peak memory usage, which is similar to the scenario without

any checkpointing at all. Therefore, we prefer checkpoint

layers/structures with earlier timestamps in forward pass when

their activation tensors have similar sizes.

Based on the above observations, we adopt a greedy algo-

rithm for checkpointing scheduling, as shown in Algorithm 1.

We first derive the estimated memory usage of the given input

tensor, leveraging the lightning memory estimator (line 1).

And we assign the layers with similar estimated memory usage

(±10% in our implementation) to a bucket and sort them ac-

cording to the execution sequence in forward pass (line 4∼12).

Then we select the layers that need to be recomputed one by

one according to their activation sizes (line 13∼21). When

the excess memory (i.e., the memory usage that is out of

the memory budget) cannot be covered by one layer, the

remaining layer with the largest activation is selected as soon

as possible (line 17). Otherwise, the layer whose activation

size is nearest to the excess memory is selected (line 19).

Note that we prefer to select layers with earlier timestamps

within a bucket in order to further reduce the peak memory

footprint. The selection procedure loops until the activation

161

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 09:49:43 UTC from IEEE Xplore. Restrictions apply.

size of selected layers exceeds the targeted excess memory.

Our experiments shows that the greedy algorithm is simple but

effective. However, Mimose still reserves a flexible interface

for users to experiment with other scheduling algorithms, such

as the Knapsack optimization and other DL approaches. If

better algorithms are explored , we can quickly replace the

current one.

Fig. 9: Peak memory usages of checkpointing different en-

coders in Bert-base, which contains 12 encoders in total.

Algorithm 1 Greedy scheduling of the responsive scheduler.

Input: Memory budget M , input tensor size x, layer set L
Output: Set of dropped/recomputed layers L′

1: est mem ← MemoryEstimator(x)
2: buckets ← empty list // Buckets of layers
3: sorted(L, key=<estimated activation size>, order=desc)
4: while ! L.is empty() do
5: l ← L.top()
6: L.remove(l)
7: initialize new bucket with l
8: while est mem[L.top()] > est mem[l] × 0.9 do
9: l′ ← L.top()

10: bucket.append(l′) and L.remove(l′)
11: sorted(bucket, key=<forward timestamp>, order=asc)
12: buckets.append(bucket)

13: excess mem ← (
∑

est mem - M)
14: while excess mem > 0 do
15: bucket candidates ← ∀b ∈ buckets, s.t. max(est mem[b]) >

excess mem
16: if bucket candidates.empty() then
17: l← buckets.top().top() // layer with largest activation
18: else
19: l ← bucket candidates.top().top()

20: L′.append(l) and remove l from buckets
21: excess mem ← excess mem - est mem[l]

V. IMPLEMENTATION

The implementation of Mimose is on the basis of the check-

pointing API (i.e., torch.utils.checkpoint) provided

by PyTorch (since v0.4.0), so that Mimose is compatible

with broad range of training codes written with PyTorch.

Although the above choice makes it difficult to achieve tensor-

level memory planning, it brings considerable performance

benefits to Mimose in generating and applying ever-changing

checkpointing plans. It is essential in scenarios with input

tensor size dynamics, because Mimose is lying on the critical

path of the training pipeline.

The data collection in Mimose is only performed by the

shuttling collector during the sheltered execution phase (Fig-

ure 6). It collects samples of different input sizes during the

first ten iterations (discussed in Section VI-E), which are used

to train the memory estimator. After that, data collection is no

longer required.

In sheltered execution, the data collector needs to collect

per-layer memory usage and per-layer forward computation

time during the model training online. And it wraps the

forward pass and instruments before and after the forward

computation of each layer. In such case, the memory usage

and computation time can be derived by comparing the state

differences.

In responsive execution, the memory scheduler holds a

cache to store the generated checkpointing plans and uses the

input tensor size as the indexing key. Whenever an input size

is encountered, the scheduler firstly searches in cache, so as to

avoid the overhead of generating plans repeatedly. In addition,

the memory usages of similar input sizes are similar, and the

generated plans are also similar. Therefore, they can also be the

plans of each other. During the forward pass, Mimose looks for

whether the ID of current layer exists in the previously gener-

ated checkpointing plan and determines whether to checkpoint

accordingly, whose overhead is negligible.

VI. EVALUATION

A. Experimental Setup

Hardware and software configurations. We conduct the

experiments on a platform equipped with two-socket Intel

Xeon E5-2680v4 CPUs (28 cores in total) and two NVIDIA

V100 GPUs. The software environment contains Ubuntu 20.04

operating system, CUDA 11.3, cuDNN v8.2.0, PyTorch v1.11,

HuggingFace transformers v4.18.0, and MMDetection v2.11.0.

Tasks, datasets, and models. We evaluate Mimose on four NLP

tasks and two object detection tasks. Their datasets, models,

and batch size settings are shown in Table II. Note that the

NLP models involves Roberta-Base, T5-Base, and Bert-Base,

which contains 125, 220, and 110 million parameters.

Comparison methods. We compare Mimose with the static

checkpointing planners, Sublinear [6], Checkmate [5], and

MONeT [17], and the dynamic checkpointing planner,

DTR [16], under various GPU memory budgets. And we adopt

the original PyTorch without checkpointing as the baseline.

The original DTR implementation lacks support for several

critical operators and fails to execute the above tasks. There-

fore, we have extended DTR with a few operators, such as

cumsum, split, masked_fill, etc.

As for MONeT, its author claims that it cannot work on NLP

models because of lacking embedding and gelu implemen-

tations (refer to this issue2). We have tried to plan only an

encoder with it and have tackled extra operators (e.g., view,

size, add_), which takes one author up for two weeks.

However, the memory consumption turns to be abnormal, thus

we omit it on NLP tasks. We have also modified MONeT to

2https://github.com/utsaslab/MONeT/issues/2

162

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 09:49:43 UTC from IEEE Xplore. Restrictions apply.

support the ResNet backbones in MMDetection. Since MONeT
requires offline checkpointing planning, we have allocated

8/12 hours to solve the ResNet50/101 backbones, respectively.

According to its paper [17], 8 hours’ solving is enough to reach

5% close to optimal solution.

As for Checkmate, it is implemented based on static graphs,

and there are many problems in converting the models of

the above tasks to static graphs. For example, the converted

static graph fails to tackle the input tensor with dynamic

size. Besides, it is built on TensorFlow and decided not to

pursue PyTorch support due to the complexity of integration

(refer to this issue3). For above reason, we use the Checkmate
implementation from MONeT repository for comparison.

TABLE II: Training tasks for evaluation.

Abbr. Task Dataset Model Batch Size

MC-Roberta Multiple Choice SWAG Roberta-B 16

TR-T5 Translation UN PC T5 8

QA-Bert Question Answering SQuAD Bert-B 12

TC-Bert Text Classification GLUE-QQP Bert-B 32

OD-R50 Object Detection COCO ResNet50 8

OD-R101 Object Detection COCO ResNet101 6

B. Overall Performance

To comprehensively evaluate different planners, we present

their execution times under different memory budgets. Fig-

ure 10 shows the execution times (10% samples of total

dataset) for different planners normalized to baseline (original

PyTorch without checkpointing). The “�” markers indicate the

memory lower bound (when checkpointing all layers) and

the memory upper bound (baseline, without checkpointing).

As seen, Mimose significantly outperforms Sublinear with

about 18.0% improvement. This is because Sublinear can

only generate a static checkpointing plan based on the largest

input tensor to avoid OOM, causing amounts of redundant

recomputations for small input tensors. In contrast, Mimose
can adaptively generate plans according to input tensors to

minimize performance overhead.

Compared with the dynamic checkpoint planner DTR, Mi-
mose improves the performance by about 15.0% on average.

The reasons can be attributed to the following points. 1)
the cost maintaining time accounts for a high proportion of

iteration time. 2) DTR incurs a large planning overhead with

limited time budget. When OOM exception happens, DTR
inspects its currently maintained tensors and determines the

tensors to be checkpointed greedily. Unfortunately, DTR is

unaware of all tensors during each training iteration and thus

cannot make global optimal plan. In contrast, thanks to the

memory estimator, Mimose is aware of all participated tensors

during each training iteration, and thus it can generate better

plans than the greedy policy adopted in DTR. 3) DTR gener-

ates lots of memory fragmentation at runtime, thus further im-

pacting the quality of the plans. During each training iteration,

3https://github.com/parasj/checkmate/issues/126

DTR frequently releases/checkpoints tensors to accommodate

new tensors. However, since the size of tensor varies, it is

impossible to fully reuse the released non-sequential memory

space, which leads to memory fragmentation. For theMC-
Roberta task, DTR’s memory fragmentation reaches 2.5 GB

with a 7 GB memory budget, whereas Mimose’s is only 0.5

GB. The memory fragmentation problem of DTRhas also
been observed in [25]. In contrast, Mimose generates and

applies a checkpointing plan for each input tensor before

the forward/backward computation. Therefore, the tensors that

need to be checkpointed are scheduled in advance, without

frequently releasing/allocating memory. In such case,Mimose
can effectively mitigate memory fragmentation.

It can be observed that the performance of Mimoseim-
proves as the memory budget increases. For example,Mimose
achieves only 2.6% slowdown compared to baselineunder
the memory budget of 8 GB. Furthermore, Mimosecan still
guarantee normal execution under a memory budget close to

the lower bound (e.g., 3.36 GB for the MC-Robertatask). The
above results indicate that Mimose can adjust the checkpoint-

ing plan for various input tensors and achieve lower overhead

compared to other checkpointing planners.

On OD-R50 and OD-R101 tasks, we try to perform experi-

ments under the memory budget of 14 GB, as solvingMONeT
and Checkmate plans for each budget can take about 20 hours

on our platform. However, only Mimose and Sublinearcan
strictly obey the memory budget, while others exceed the

memory budget. So we mark their peak memory consumption

in the figures. Besides, on OD-R101 task, MONeT andCheck-
mate are more than 2× slower that the baseline. Even though

Mimose uses less memory, it still has lower overhead compared

to MONeT and Checkmate, and we think they should take

much more hours for solving satisfying plans.

C. Overhead Breakdown

We normalize the Mimose overhead to the duration of

the training task executing one iteration. Table III shows

the overhead breakdown under 6 GB memory budget when

executing one epoch, where the total overhead is normalized

to the single-iteration time. The Mimose overhead comes from

three parts: data collector, memory estimator, and memory

scheduler. Specifically, the data collector involves redundant

computations caused by forwarding each layer twice. The

memory estimator predicts the per-layer memory usage for

each input tensor size. The memory scheduler generates a

checkpointing plan based on the estimated memory usage and

schedules the activation tensors. Note that Mimosewill reuse
the previous checkpointing plans without introducing overhead

when executing iterations of the same input sizes.

It can be observed that the data collector accounts for about

12.0%˜45.3% of the time within a single iteration due to

forwarding twice and the slower first iteration. To this end,

Mimose collects data by forwarding twice only in the first 10

iterations, and predict memory usage by memory estimator if

necessary in the remaining iterations. In contrast, the overhead

of memory estimator and scheduler is less than 1.25 ms,

163

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 09:49:43 UTC from IEEE Xplore. Restrictions apply.

(a) MC-Roberta (b) TR-T5

(c) QA-Bert (d) TC-Bert

(e) OD-R50 (f) OD-R101

Fig. 10: Training times for different planners normalized to

Baseline (original PyTorch without memory limit), where x-

axis represents the memory budget. The “�” markers indicate

the memory lower bound (when checkpointing all layers) and

the memory upper bound (baseline, without checkpointing).

TABLE III: Overhead breakdown of Mimose under 6 GB

memory budget when executing one epoch, where the total

overhead is normalized to the single-iteration time.

Task Collector Estimator & Scheduler Total

MC-Roberta

(371.86 ms/iter)

145.99 ms

(10 times)

0.26 ms˜0.32 ms

(17 times)

1464.77 ms

(3.93 iters)

TR-T5

(568.50 ms/iter)

257.22 ms

(10 times)

0.47 ms˜0.64 ms

(32 times)

2589.34 ms

(4.55 iters)

QA-Bert

(452.89 ms/iter)

118.96 ms

(10 times)

0.27 ms˜0.38 ms

(24 times)

1196.88 ms

(2.64 iters)

TC-Bert

(250.27 ms/iter)

157.73 ms

(10 times)

0.27 ms˜0.34 ms

(51 times)

1592.49 ms

(6.36 iters)

OD-R50

(953.91 ms/iter)

114.95 ms

(10 times)

0.29 ms˜0.70 ms

(64 times)

1171.26 ms

(1.23 iters)

OD-R101

(1080.16 ms/iter)

228.35 ms

(10 times)

0.57 ms˜1.25 ms

(120 times)

2368.39 ms

(2.19 iters)

which is negligible compared to the single-iteration time (less

than 0.2%), due to the lightweight estimation model and

coarse-grained (stage-level) scheduling algorithm. Besides, the

memory scheduler only needs to generate the checkpointing

plan dozens of times during the entire epoch, as similar input

sizes can share the same plan. The total overhead of Mimose
is only 3.48 iterations on average, whereas the training of one

epoch contains thousands of iterations. In sum, it is effective to

improve performance under memory budgets by using Mimose
to generate checkpointing plans for varying input sizes.

D. Memory Consumption

Mimose can adjust the checkpointing plan with the input

size to minimize computational overhead. Figure 11 shows the

memory consumption of Mimose processing varying sequence

lengths, where MB-X refers to the memory budget of X GB.

It can be observed that there is a small gap between the upper

limit of memory consumption and the memory budget. This

is because Mimose usually needs to reserve 0.5 GB˜1 GB of

memory space to deal with possible memory fragmentation. In

addition, there are a small number of points with particularly

low memory consumption. The reason is that the data collector

recomputes all modules in the first few iterations of the epoch

to obtain layer-by-layer memory usage. In the next iterations,

Mimose avoids redundant recomputations by predicting mem-

ory usage through the estimation model.

The memory consumption increases with the input size

until the memory budget is reached. This indicates that for

small input sizes, memory optimization is disabled to avoid

introducing redundant computations. After reaching the mem-

ory budget, Mimose drops partial activation tensors through

the checkpointing plan to reduce memory consumption. Since

similar input sizes share the same checkpointing plan, the

curve shows an upward trend of small segment separation

with increasing input size. In addition, the curve of the latter

segments under the same memory budget shows a downward

trend. Consistent with other works [6], [16], the minimum

recomputation unit of Mimose is a layer (or module in other

literature), and the memory consumption of each layer is pos-

itively related to the input size. The above results demonstrate

that Mimose can effectively utilize the memory budget by

reducing memory fragmentation, thereby generating a near-

optimal checkpoint plan with low computational overhead.

E. Memory Prediction

The memory estimator in Mimose can be formulated as

predicting the memory usage of the model under the given

input size. We evaluate six representative regression models as

candidates for our memory estimator, including the polynomial

regression model (with order n = 1, 2, 3), support vector

machine (SVM), decision tree, and XGBoost. Specifically, we

train the models using samples (i.e., per-layer memory usage

under different input sizes) collected by the data collector,

and compare the overall training time, prediction latency, and

prediction error. The experimental results on TC-Bert are

shown in Table IV. Specifically, for each layer of TC-Bert,

the input of the prediction model is the input tensor size of

the current iteration, and the output is the estimated memory

usage of the layer. We sum up the estimated memory usage

of all layers and compare it with the actual memory usage

to calculate the relative prediction error. Except XGBoost, the

training and prediction of the memory estimator candidates

can be regarded as nearly zero-overhead compared to the per-

iteration training time. For polynomial regression models with

different orders (n = 1, 2, 3), the quadratic model achieves

a very low prediction error (at the thousandth level), which

demonstrates the correlation between the input sizes and

164

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 09:49:43 UTC from IEEE Xplore. Restrictions apply.

(a) MC-Roberta (b) TR-T5

(c) QA-Bert (d) TC-Bert

(e) OD-R50 (f) OD-R101

Fig. 11: The memory consumption of Mimose processing

varying-sized inputs, where MB-X refers to the memory

budget of X GB.

the memory usages conforms to the quadratic polynomial

distribution. Other regression models fail to achieve the same

level of prediction error, even with more training samples,

due to their tendency to overfit. Furthermore, the experiment

results of the quadratic polynomial model on four training

tasks are shown in Table V. The quadratic polynomial model

achieved low prediction errors (at the thousandth level) on all

tasks, confirming that our observation in Section IV-C can be

well generalized to NLP and CV tasks. Therefore, we adopt

the quadratic polynomial regression models in our memory

estimator, which are more lightweight and more accurate than

other regression models.

TABLE IV: Prediction performance comparison of regression

models on the text classification task, TC-Bert.

Regression
Model

Samples Training Time
(ms)

Prediction Latency
(us)

Error

Polynomial (n=1) 10 0.90 14.78 4.04%
Polynomial (n=2) 10 0.98 16.21 0.32%
Polynomial (n=3) 10 1.01 17.88 0.32%

SVR 10 1.01 107.05 3.80%
SVR 50 2.70 110.39 3.56%

DecisionTree 10 3.98 82.97 5.67%
DecisionTree 50 21.15 82.25 1.50%

XGBoost 10 428.76 1348.26 5.13%
XGBoost 50 2504.11 1354.93 1.43%

VII. RELATED WORK

DNN Model Compression – Since over-parameterization is

a common property of DNN models, research works exploit

compression techniques such as low precision, quantization,

TABLE V: Prediction performance of quadratic polynomial

predictor on four training tasks.

Task # Samples Training Time
(ms)

Prediction Latency
(us)

Error

MC-Roberta 10 0.94 15.50 0.46%
TR-T5 10 0.99 14.54 0.10%

QA-Bert 10 1.18 16.45 0.33%
TC-Bert 10 0.98 16.21 0.32%
OD-R50 10 1.02 15.50 1.70%

OD-R101 10 1.11 18.36 2.29%

and pruning to reduce memory consumption. Compression

techniques [7], [8], [28] usually reduce value redundancy by

storing the compressed representation of feature maps and

decompress them in the backward pass, however, they often re-

quire customized hardware designs to ensure (de)compression

efficiency. Quantization [9], [10] and pruning [11], [12] tech-

niques drop the unnecessary floating-point representations in

model parameters, such as converting to lower-bit ones and

removing useless ones, to reduce the memory footprint and

computation intensity. However, these techniques have an

unpredictable impact on model convergence.

Model Checkpoint with Recomputation – Static check-

pointing planners [5], [6], [17] collect model information and

generate the checkpointing plan before training. In contrast,

the dynamic planner (e.g., DTR [16]) can handle input dynam-

ics by generating checkpointing plans on the fly. Its activation

dropping decisions are triggered on demand by the OOM

exception, which increases the checkpointing delay compared

to static planners. Furthermore, a dynamic planner usually

lacks holistic information about model training, leading to

significant overhead. Note that Mimose differs from both the

static and dynamic ones, and make a feature of input-aware

checkpointing planning. Mimose can leverage the holistic

model information for efficient planning, and can adjust the

plans according to input tensors, so as to maximize GPU

memory utilization and minimize the performance overhead.

Model Checkpoint with Swapping – Swapping tech-

niques [13]–[15], [29] expand the scale of DNN training under

limited memory capacity by offloading temporarily unneeded

data to the CPU. There are also research works [4], [24]–

[26], [30]–[33] combining swapping with checkpointing for

hybrid memory optimization. However, swapping techniques

may achieve high copy overhead due to limited PCIe band-

width. Especially for varying input tensors, it is difficult to

dynamically adjust swapping decisions to hide latencies by

overlapping.

VIII. CONCLUSION

In this paper, we propose Mimose, an input-aware check-

pointing planner for efficient GPU training under specific

memory budgets. Mimose consists of a shuttling online col-

lector, a lightning memory estimator and an adaptive memory

scheduler, which together can dynamically and agilely adjust

the checkpointing plan according to the predicted memory us-

age of the current input tensor to improve training throughput,

while satisfying given GPU memory budgets. The experiment

165

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 09:49:43 UTC from IEEE Xplore. Restrictions apply.

results show that Mimose can achieve better training through-

put for representative DL tasks compared to the-state-of-the-art

checkpointing frameworks.

ACKNOWLEDGMENT

This work is supported by National Key R&D Program

of China (No. 2020YFB1506703), National Natural Science

Foundation of China (No. 62072018 and U22A2028), Special

Fund for Basic Scientific Research of Central Universities, and

SenseTime Research Fund. Hailong Yang is the corresponding

author.

REFERENCES

[1] B. Ghorbani, O. Firat, M. Freitag, A. Bapna, M. Krikun, X. Garcia,
C. Chelba, and C. Cherry, “Scaling laws for neural machine translation,”
in International Conference on Learning Representations, 2022.

[2] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural
language models,” 2020.

[3] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, “Zero-
infinity: Breaking the gpu memory wall for extreme scale deep learning,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’21. New York,
NY, USA: Association for Computing Machinery, 2021.

[4] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and X. Qian,
Capuchin: Tensor-Based GPU Memory Management for Deep Learning.
New York, NY, USA: Association for Computing Machinery, 2020, p.
891–905.

[5] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel, J. Gonzalez,
K. Keutzer, and I. Stoica, “Checkmate: Breaking the memory wall with
optimal tensor rematerialization,” in Proceedings of Machine Learning
and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2,
2020, pp. 497–511.

[6] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” arXiv preprint arXiv:1604.06174, 2016.

[7] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, N. E. Jerger,
and A. Moshovos, “Proteus: Exploiting numerical precision variability
in deep neural networks,” in Proceedings of the 2016 International
Conference on Supercomputing, 2016, pp. 1–12.

[8] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko,
“Gist: Efficient data encoding for deep neural network training,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 776–789.

[9] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[10] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” Advances in neural information processing
systems, vol. 29, 2016.

[11] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[12] S. Yang, W. Chen, X. Zhang, S. He, Y. Yin, and X.-H. Sun, “Auto-prune:
automated dnn pruning and mapping for reram-based accelerator,” in
Proceedings of the ACM International Conference on Supercomputing,
2021, pp. 304–315.

[13] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

[14] C.-C. Huang, G. Jin, and J. Li, “Swapadvisor: Pushing deep learning
beyond the gpu memory limit via smart swapping,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 1341–1355.

[15] J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel:
Efficient tensor migration and allocation on heterogeneous memory
systems for deep learning,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2021, pp.
598–611.

[16] M. Kirisame, S. Lyubomirsky, A. Haan, J. Brennan, M. He, J. Roesch,
T. Chen, and Z. Tatlock, “Dynamic tensor rematerialization,” in Inter-
national Conference on Learning Representations, 2021.

[17] A. Shah, C.-Y. Wu, J. Mohan, V. Chidambaram, and P. Kraehenbuehl,
“Memory optimization for deep networks,” in International Conference
on Learning Representations, 2021.

[18] J. Feng and D. Huang, “Optimal gradient checkpoint search for arbitrary
computation graphs,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 11 433–11 442.

[19] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss
for dense object detection,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[20] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213–
229.

[21] P. Sun, R. Zhang, Y. Jiang, T. Kong, C. Xu, W. Zhan, M. Tomizuka,
L. Li, Z. Yuan, C. Wang, and P. Luo, “Sparse r-cnn: End-to-end object
detection with learnable proposals,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2021, pp. 14 454–14 463.

[22] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” arXiv preprint arXiv:2103.14030, 2021.

[23] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 12, pp. 2346–2363, 2019.

[24] S. He, P. Chen, S. Chen, Z. Li, S. Yang, W. Chen, and L. Shou, “Home:
A holistic gpu memory management framework for deep learning,” IEEE
Transactions on Computers, 2022.

[25] Z. Hu, J. Xiao, Z. Deng, M. Li, K. Zhang, X. Zhang, K. Meng, N. Sun,
and G. Tan, “Megtaichi: dynamic tensor-based memory management
optimization for dnn training,” in Proceedings of the 36th ACM Inter-
national Conference on Supercomputing, 2022, pp. 1–13.

[26] L. Wen, Z. Zong, L. Lin, and L. Lin, “A swap dominated tensor re-
generation strategy for training deep learning models,” in 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2022, pp. 1–12.

[27] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 785–794.

[28] J. Chen, L. Zheng, Z. Yao, D. Wang, I. Stoica, M. Mahoney,
and J. Gonzalez, “Actnn: Reducing training memory footprint via
2-bit activation compressed training,” in Proceedings of the 38th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, M. Meila and T. Zhang, Eds., vol.
139. PMLR, 18–24 Jul 2021, pp. 1803–1813. [Online]. Available:
https://proceedings.mlr.press/v139/chen21z.html

[29] J. Fang, Z. Zhu, S. Li, H. Su, Y. Yu, J. Zhou, and Y. You, “Paral-
lel training of pre-trained models via chunk-based dynamic memory
management,” IEEE Transactions on Parallel and Distributed Systems,
vol. 34, no. 1, pp. 304–315, 2022.

[30] W. Jiang, Y. Ma, B. Liu, H. Liu, B. B. Zhou, J. Zhu, S. Wu, and H. Jin,
“Layup: Layer-adaptive and multi-type intermediate-oriented memory
optimization for gpu-based cnns,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 16, no. 4, pp. 1–23, 2019.

[31] S. G. Patil, P. Jain, P. Dutta, I. Stoica, and J. Gonzalez, “POET: Training
neural networks on tiny devices with integrated rematerialization and
paging,” in Proceedings of the 39th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and
S. Sabato, Eds., vol. 162. PMLR, 17–23 Jul 2022, pp. 17 573–17 583.
[Online]. Available: https://proceedings.mlr.press/v162/patil22b.html

[32] M. Schuler, R. Membarth, and P. Slusallek, “Xengine: Optimal tensor
rematerialization for neural networks in heterogeneous environments,”
ACM Trans. Archit. Code Optim., vol. 20, no. 1, dec 2022. [Online].
Available: https://doi.org/10.1145/3568956

[33] Y. Tang, C. Wang, Y. Zhang, Y. Liu, X. Zhang, L. Qiao, Z. Lai,
and D. Li, “Delta: Dynamically optimizing gpu memory beyond tensor
recomputation,” arXiv preprint arXiv:2203.15980, 2022.

166

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 09:49:43 UTC from IEEE Xplore. Restrictions apply.

